| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eloppf2.k |
|- ( F oppFunc G ) = K |
| 2 |
|
eloppf2.x |
|- ( ph -> X e. K ) |
| 3 |
2 1
|
eleqtrrdi |
|- ( ph -> X e. ( F oppFunc G ) ) |
| 4 |
|
df-oppf |
|- oppFunc = ( f e. _V , g e. _V |-> if ( ( Rel g /\ Rel dom g ) , <. f , tpos g >. , (/) ) ) |
| 5 |
4
|
elmpocl |
|- ( X e. ( F oppFunc G ) -> ( F e. _V /\ G e. _V ) ) |
| 6 |
3 5
|
syl |
|- ( ph -> ( F e. _V /\ G e. _V ) ) |
| 7 |
|
oppfvalg |
|- ( ( F e. _V /\ G e. _V ) -> ( F oppFunc G ) = if ( ( Rel G /\ Rel dom G ) , <. F , tpos G >. , (/) ) ) |
| 8 |
6 7
|
syl |
|- ( ph -> ( F oppFunc G ) = if ( ( Rel G /\ Rel dom G ) , <. F , tpos G >. , (/) ) ) |
| 9 |
3 8
|
eleqtrd |
|- ( ph -> X e. if ( ( Rel G /\ Rel dom G ) , <. F , tpos G >. , (/) ) ) |
| 10 |
9
|
ne0d |
|- ( ph -> if ( ( Rel G /\ Rel dom G ) , <. F , tpos G >. , (/) ) =/= (/) ) |
| 11 |
|
iffalse |
|- ( -. ( Rel G /\ Rel dom G ) -> if ( ( Rel G /\ Rel dom G ) , <. F , tpos G >. , (/) ) = (/) ) |
| 12 |
11
|
necon1ai |
|- ( if ( ( Rel G /\ Rel dom G ) , <. F , tpos G >. , (/) ) =/= (/) -> ( Rel G /\ Rel dom G ) ) |
| 13 |
10 12
|
syl |
|- ( ph -> ( Rel G /\ Rel dom G ) ) |
| 14 |
6 13
|
jca |
|- ( ph -> ( ( F e. _V /\ G e. _V ) /\ ( Rel G /\ Rel dom G ) ) ) |