Metamath Proof Explorer


Theorem eloppf2

Description: Both components of a pre-image of a non-empty opposite functor exist; and the second component is a relation on triples. (Contributed by Zhi Wang, 18-Nov-2025)

Ref Expression
Hypotheses eloppf2.k No typesetting found for |- ( F oppFunc G ) = K with typecode |-
eloppf2.x φ X K
Assertion eloppf2 φ F V G V Rel G Rel dom G

Proof

Step Hyp Ref Expression
1 eloppf2.k Could not format ( F oppFunc G ) = K : No typesetting found for |- ( F oppFunc G ) = K with typecode |-
2 eloppf2.x φ X K
3 2 1 eleqtrrdi Could not format ( ph -> X e. ( F oppFunc G ) ) : No typesetting found for |- ( ph -> X e. ( F oppFunc G ) ) with typecode |-
4 df-oppf Could not format oppFunc = ( f e. _V , g e. _V |-> if ( ( Rel g /\ Rel dom g ) , <. f , tpos g >. , (/) ) ) : No typesetting found for |- oppFunc = ( f e. _V , g e. _V |-> if ( ( Rel g /\ Rel dom g ) , <. f , tpos g >. , (/) ) ) with typecode |-
5 4 elmpocl Could not format ( X e. ( F oppFunc G ) -> ( F e. _V /\ G e. _V ) ) : No typesetting found for |- ( X e. ( F oppFunc G ) -> ( F e. _V /\ G e. _V ) ) with typecode |-
6 3 5 syl φ F V G V
7 oppfvalg Could not format ( ( F e. _V /\ G e. _V ) -> ( F oppFunc G ) = if ( ( Rel G /\ Rel dom G ) , <. F , tpos G >. , (/) ) ) : No typesetting found for |- ( ( F e. _V /\ G e. _V ) -> ( F oppFunc G ) = if ( ( Rel G /\ Rel dom G ) , <. F , tpos G >. , (/) ) ) with typecode |-
8 6 7 syl Could not format ( ph -> ( F oppFunc G ) = if ( ( Rel G /\ Rel dom G ) , <. F , tpos G >. , (/) ) ) : No typesetting found for |- ( ph -> ( F oppFunc G ) = if ( ( Rel G /\ Rel dom G ) , <. F , tpos G >. , (/) ) ) with typecode |-
9 3 8 eleqtrd φ X if Rel G Rel dom G F tpos G
10 9 ne0d φ if Rel G Rel dom G F tpos G
11 iffalse ¬ Rel G Rel dom G if Rel G Rel dom G F tpos G =
12 11 necon1ai if Rel G Rel dom G F tpos G Rel G Rel dom G
13 10 12 syl φ Rel G Rel dom G
14 6 13 jca φ F V G V Rel G Rel dom G