| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eloppf2.k |
⊢ ( 𝐹 oppFunc 𝐺 ) = 𝐾 |
| 2 |
|
eloppf2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) |
| 3 |
2 1
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐹 oppFunc 𝐺 ) ) |
| 4 |
|
df-oppf |
⊢ oppFunc = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ if ( ( Rel 𝑔 ∧ Rel dom 𝑔 ) , 〈 𝑓 , tpos 𝑔 〉 , ∅ ) ) |
| 5 |
4
|
elmpocl |
⊢ ( 𝑋 ∈ ( 𝐹 oppFunc 𝐺 ) → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) |
| 6 |
3 5
|
syl |
⊢ ( 𝜑 → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) |
| 7 |
|
oppfvalg |
⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 𝐹 oppFunc 𝐺 ) = if ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) , 〈 𝐹 , tpos 𝐺 〉 , ∅ ) ) |
| 8 |
6 7
|
syl |
⊢ ( 𝜑 → ( 𝐹 oppFunc 𝐺 ) = if ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) , 〈 𝐹 , tpos 𝐺 〉 , ∅ ) ) |
| 9 |
3 8
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ if ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) , 〈 𝐹 , tpos 𝐺 〉 , ∅ ) ) |
| 10 |
9
|
ne0d |
⊢ ( 𝜑 → if ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) , 〈 𝐹 , tpos 𝐺 〉 , ∅ ) ≠ ∅ ) |
| 11 |
|
iffalse |
⊢ ( ¬ ( Rel 𝐺 ∧ Rel dom 𝐺 ) → if ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) , 〈 𝐹 , tpos 𝐺 〉 , ∅ ) = ∅ ) |
| 12 |
11
|
necon1ai |
⊢ ( if ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) , 〈 𝐹 , tpos 𝐺 〉 , ∅ ) ≠ ∅ → ( Rel 𝐺 ∧ Rel dom 𝐺 ) ) |
| 13 |
10 12
|
syl |
⊢ ( 𝜑 → ( Rel 𝐺 ∧ Rel dom 𝐺 ) ) |
| 14 |
6 13
|
jca |
⊢ ( 𝜑 → ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Rel 𝐺 ∧ Rel dom 𝐺 ) ) ) |