| Step | Hyp | Ref | Expression | 
						
							| 1 |  | euind.1 |  |-  B e. _V | 
						
							| 2 |  | euind.2 |  |-  ( x = y -> ( ph <-> ps ) ) | 
						
							| 3 | 2 | cbvexvw |  |-  ( E. x ph <-> E. y ps ) | 
						
							| 4 | 1 | isseti |  |-  E. z z = B | 
						
							| 5 | 4 | biantrur |  |-  ( ps <-> ( E. z z = B /\ ps ) ) | 
						
							| 6 | 5 | exbii |  |-  ( E. y ps <-> E. y ( E. z z = B /\ ps ) ) | 
						
							| 7 |  | 19.41v |  |-  ( E. z ( z = B /\ ps ) <-> ( E. z z = B /\ ps ) ) | 
						
							| 8 | 7 | exbii |  |-  ( E. y E. z ( z = B /\ ps ) <-> E. y ( E. z z = B /\ ps ) ) | 
						
							| 9 |  | excom |  |-  ( E. y E. z ( z = B /\ ps ) <-> E. z E. y ( z = B /\ ps ) ) | 
						
							| 10 | 6 8 9 | 3bitr2i |  |-  ( E. y ps <-> E. z E. y ( z = B /\ ps ) ) | 
						
							| 11 | 3 10 | bitri |  |-  ( E. x ph <-> E. z E. y ( z = B /\ ps ) ) | 
						
							| 12 |  | eqeq2 |  |-  ( A = B -> ( z = A <-> z = B ) ) | 
						
							| 13 | 12 | imim2i |  |-  ( ( ( ph /\ ps ) -> A = B ) -> ( ( ph /\ ps ) -> ( z = A <-> z = B ) ) ) | 
						
							| 14 |  | biimpr |  |-  ( ( z = A <-> z = B ) -> ( z = B -> z = A ) ) | 
						
							| 15 | 14 | imim2i |  |-  ( ( ( ph /\ ps ) -> ( z = A <-> z = B ) ) -> ( ( ph /\ ps ) -> ( z = B -> z = A ) ) ) | 
						
							| 16 |  | an31 |  |-  ( ( ( ph /\ ps ) /\ z = B ) <-> ( ( z = B /\ ps ) /\ ph ) ) | 
						
							| 17 | 16 | imbi1i |  |-  ( ( ( ( ph /\ ps ) /\ z = B ) -> z = A ) <-> ( ( ( z = B /\ ps ) /\ ph ) -> z = A ) ) | 
						
							| 18 |  | impexp |  |-  ( ( ( ( ph /\ ps ) /\ z = B ) -> z = A ) <-> ( ( ph /\ ps ) -> ( z = B -> z = A ) ) ) | 
						
							| 19 |  | impexp |  |-  ( ( ( ( z = B /\ ps ) /\ ph ) -> z = A ) <-> ( ( z = B /\ ps ) -> ( ph -> z = A ) ) ) | 
						
							| 20 | 17 18 19 | 3bitr3i |  |-  ( ( ( ph /\ ps ) -> ( z = B -> z = A ) ) <-> ( ( z = B /\ ps ) -> ( ph -> z = A ) ) ) | 
						
							| 21 | 15 20 | sylib |  |-  ( ( ( ph /\ ps ) -> ( z = A <-> z = B ) ) -> ( ( z = B /\ ps ) -> ( ph -> z = A ) ) ) | 
						
							| 22 | 13 21 | syl |  |-  ( ( ( ph /\ ps ) -> A = B ) -> ( ( z = B /\ ps ) -> ( ph -> z = A ) ) ) | 
						
							| 23 | 22 | 2alimi |  |-  ( A. x A. y ( ( ph /\ ps ) -> A = B ) -> A. x A. y ( ( z = B /\ ps ) -> ( ph -> z = A ) ) ) | 
						
							| 24 |  | 19.23v |  |-  ( A. y ( ( z = B /\ ps ) -> ( ph -> z = A ) ) <-> ( E. y ( z = B /\ ps ) -> ( ph -> z = A ) ) ) | 
						
							| 25 | 24 | albii |  |-  ( A. x A. y ( ( z = B /\ ps ) -> ( ph -> z = A ) ) <-> A. x ( E. y ( z = B /\ ps ) -> ( ph -> z = A ) ) ) | 
						
							| 26 |  | 19.21v |  |-  ( A. x ( E. y ( z = B /\ ps ) -> ( ph -> z = A ) ) <-> ( E. y ( z = B /\ ps ) -> A. x ( ph -> z = A ) ) ) | 
						
							| 27 | 25 26 | bitri |  |-  ( A. x A. y ( ( z = B /\ ps ) -> ( ph -> z = A ) ) <-> ( E. y ( z = B /\ ps ) -> A. x ( ph -> z = A ) ) ) | 
						
							| 28 | 23 27 | sylib |  |-  ( A. x A. y ( ( ph /\ ps ) -> A = B ) -> ( E. y ( z = B /\ ps ) -> A. x ( ph -> z = A ) ) ) | 
						
							| 29 | 28 | eximdv |  |-  ( A. x A. y ( ( ph /\ ps ) -> A = B ) -> ( E. z E. y ( z = B /\ ps ) -> E. z A. x ( ph -> z = A ) ) ) | 
						
							| 30 | 11 29 | biimtrid |  |-  ( A. x A. y ( ( ph /\ ps ) -> A = B ) -> ( E. x ph -> E. z A. x ( ph -> z = A ) ) ) | 
						
							| 31 | 30 | imp |  |-  ( ( A. x A. y ( ( ph /\ ps ) -> A = B ) /\ E. x ph ) -> E. z A. x ( ph -> z = A ) ) | 
						
							| 32 |  | pm4.24 |  |-  ( ph <-> ( ph /\ ph ) ) | 
						
							| 33 | 32 | biimpi |  |-  ( ph -> ( ph /\ ph ) ) | 
						
							| 34 |  | anim12 |  |-  ( ( ( ph -> z = A ) /\ ( ph -> w = A ) ) -> ( ( ph /\ ph ) -> ( z = A /\ w = A ) ) ) | 
						
							| 35 |  | eqtr3 |  |-  ( ( z = A /\ w = A ) -> z = w ) | 
						
							| 36 | 33 34 35 | syl56 |  |-  ( ( ( ph -> z = A ) /\ ( ph -> w = A ) ) -> ( ph -> z = w ) ) | 
						
							| 37 | 36 | alanimi |  |-  ( ( A. x ( ph -> z = A ) /\ A. x ( ph -> w = A ) ) -> A. x ( ph -> z = w ) ) | 
						
							| 38 |  | 19.23v |  |-  ( A. x ( ph -> z = w ) <-> ( E. x ph -> z = w ) ) | 
						
							| 39 | 37 38 | sylib |  |-  ( ( A. x ( ph -> z = A ) /\ A. x ( ph -> w = A ) ) -> ( E. x ph -> z = w ) ) | 
						
							| 40 | 39 | com12 |  |-  ( E. x ph -> ( ( A. x ( ph -> z = A ) /\ A. x ( ph -> w = A ) ) -> z = w ) ) | 
						
							| 41 | 40 | alrimivv |  |-  ( E. x ph -> A. z A. w ( ( A. x ( ph -> z = A ) /\ A. x ( ph -> w = A ) ) -> z = w ) ) | 
						
							| 42 | 41 | adantl |  |-  ( ( A. x A. y ( ( ph /\ ps ) -> A = B ) /\ E. x ph ) -> A. z A. w ( ( A. x ( ph -> z = A ) /\ A. x ( ph -> w = A ) ) -> z = w ) ) | 
						
							| 43 |  | eqeq1 |  |-  ( z = w -> ( z = A <-> w = A ) ) | 
						
							| 44 | 43 | imbi2d |  |-  ( z = w -> ( ( ph -> z = A ) <-> ( ph -> w = A ) ) ) | 
						
							| 45 | 44 | albidv |  |-  ( z = w -> ( A. x ( ph -> z = A ) <-> A. x ( ph -> w = A ) ) ) | 
						
							| 46 | 45 | eu4 |  |-  ( E! z A. x ( ph -> z = A ) <-> ( E. z A. x ( ph -> z = A ) /\ A. z A. w ( ( A. x ( ph -> z = A ) /\ A. x ( ph -> w = A ) ) -> z = w ) ) ) | 
						
							| 47 | 31 42 46 | sylanbrc |  |-  ( ( A. x A. y ( ( ph /\ ps ) -> A = B ) /\ E. x ph ) -> E! z A. x ( ph -> z = A ) ) |