Metamath Proof Explorer


Theorem evl1scvarpwval

Description: Value of a univariate polynomial evaluation mapping a multiple of an exponentiation of a variable to the multiple of the exponentiation of the evaluated variable. (Contributed by AV, 18-Sep-2019)

Ref Expression
Hypotheses evl1varpw.q
|- Q = ( eval1 ` R )
evl1varpw.w
|- W = ( Poly1 ` R )
evl1varpw.g
|- G = ( mulGrp ` W )
evl1varpw.x
|- X = ( var1 ` R )
evl1varpw.b
|- B = ( Base ` R )
evl1varpw.e
|- .^ = ( .g ` G )
evl1varpw.r
|- ( ph -> R e. CRing )
evl1varpw.n
|- ( ph -> N e. NN0 )
evl1scvarpw.t1
|- .X. = ( .s ` W )
evl1scvarpw.a
|- ( ph -> A e. B )
evl1scvarpwval.c
|- ( ph -> C e. B )
evl1scvarpwval.h
|- H = ( mulGrp ` R )
evl1scvarpwval.e
|- E = ( .g ` H )
evl1scvarpwval.t
|- .x. = ( .r ` R )
Assertion evl1scvarpwval
|- ( ph -> ( ( Q ` ( A .X. ( N .^ X ) ) ) ` C ) = ( A .x. ( N E C ) ) )

Proof

Step Hyp Ref Expression
1 evl1varpw.q
 |-  Q = ( eval1 ` R )
2 evl1varpw.w
 |-  W = ( Poly1 ` R )
3 evl1varpw.g
 |-  G = ( mulGrp ` W )
4 evl1varpw.x
 |-  X = ( var1 ` R )
5 evl1varpw.b
 |-  B = ( Base ` R )
6 evl1varpw.e
 |-  .^ = ( .g ` G )
7 evl1varpw.r
 |-  ( ph -> R e. CRing )
8 evl1varpw.n
 |-  ( ph -> N e. NN0 )
9 evl1scvarpw.t1
 |-  .X. = ( .s ` W )
10 evl1scvarpw.a
 |-  ( ph -> A e. B )
11 evl1scvarpwval.c
 |-  ( ph -> C e. B )
12 evl1scvarpwval.h
 |-  H = ( mulGrp ` R )
13 evl1scvarpwval.e
 |-  E = ( .g ` H )
14 evl1scvarpwval.t
 |-  .x. = ( .r ` R )
15 eqid
 |-  ( Base ` W ) = ( Base ` W )
16 crngring
 |-  ( R e. CRing -> R e. Ring )
17 7 16 syl
 |-  ( ph -> R e. Ring )
18 2 ply1ring
 |-  ( R e. Ring -> W e. Ring )
19 17 18 syl
 |-  ( ph -> W e. Ring )
20 3 ringmgp
 |-  ( W e. Ring -> G e. Mnd )
21 19 20 syl
 |-  ( ph -> G e. Mnd )
22 4 2 15 vr1cl
 |-  ( R e. Ring -> X e. ( Base ` W ) )
23 17 22 syl
 |-  ( ph -> X e. ( Base ` W ) )
24 3 15 mgpbas
 |-  ( Base ` W ) = ( Base ` G )
25 24 6 mulgnn0cl
 |-  ( ( G e. Mnd /\ N e. NN0 /\ X e. ( Base ` W ) ) -> ( N .^ X ) e. ( Base ` W ) )
26 21 8 23 25 syl3anc
 |-  ( ph -> ( N .^ X ) e. ( Base ` W ) )
27 1 2 3 4 5 6 7 8 11 12 13 evl1varpwval
 |-  ( ph -> ( ( Q ` ( N .^ X ) ) ` C ) = ( N E C ) )
28 26 27 jca
 |-  ( ph -> ( ( N .^ X ) e. ( Base ` W ) /\ ( ( Q ` ( N .^ X ) ) ` C ) = ( N E C ) ) )
29 1 2 5 15 7 11 28 10 9 14 evl1vsd
 |-  ( ph -> ( ( A .X. ( N .^ X ) ) e. ( Base ` W ) /\ ( ( Q ` ( A .X. ( N .^ X ) ) ) ` C ) = ( A .x. ( N E C ) ) ) )
30 29 simprd
 |-  ( ph -> ( ( Q ` ( A .X. ( N .^ X ) ) ) ` C ) = ( A .x. ( N E C ) ) )