| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evl1gsummon.q |
|- Q = ( eval1 ` R ) |
| 2 |
|
evl1gsummon.k |
|- K = ( Base ` R ) |
| 3 |
|
evl1gsummon.w |
|- W = ( Poly1 ` R ) |
| 4 |
|
evl1gsummon.b |
|- B = ( Base ` W ) |
| 5 |
|
evl1gsummon.x |
|- X = ( var1 ` R ) |
| 6 |
|
evl1gsummon.h |
|- H = ( mulGrp ` R ) |
| 7 |
|
evl1gsummon.e |
|- E = ( .g ` H ) |
| 8 |
|
evl1gsummon.g |
|- G = ( mulGrp ` W ) |
| 9 |
|
evl1gsummon.p |
|- .^ = ( .g ` G ) |
| 10 |
|
evl1gsummon.t1 |
|- .X. = ( .s ` W ) |
| 11 |
|
evl1gsummon.t2 |
|- .x. = ( .r ` R ) |
| 12 |
|
evl1gsummon.r |
|- ( ph -> R e. CRing ) |
| 13 |
|
evl1gsummon.a |
|- ( ph -> A. x e. M A e. K ) |
| 14 |
|
evl1gsummon.m |
|- ( ph -> M C_ NN0 ) |
| 15 |
|
evl1gsummon.f |
|- ( ph -> M e. Fin ) |
| 16 |
|
evl1gsummon.n |
|- ( ph -> A. x e. M N e. NN0 ) |
| 17 |
|
evl1gsummon.c |
|- ( ph -> C e. K ) |
| 18 |
|
eqid |
|- ( R ^s K ) = ( R ^s K ) |
| 19 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 20 |
12 19
|
syl |
|- ( ph -> R e. Ring ) |
| 21 |
3
|
ply1lmod |
|- ( R e. Ring -> W e. LMod ) |
| 22 |
20 21
|
syl |
|- ( ph -> W e. LMod ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ x e. M ) -> W e. LMod ) |
| 24 |
13
|
r19.21bi |
|- ( ( ph /\ x e. M ) -> A e. K ) |
| 25 |
3
|
ply1sca |
|- ( R e. CRing -> R = ( Scalar ` W ) ) |
| 26 |
12 25
|
syl |
|- ( ph -> R = ( Scalar ` W ) ) |
| 27 |
26
|
fveq2d |
|- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` W ) ) ) |
| 28 |
2 27
|
eqtrid |
|- ( ph -> K = ( Base ` ( Scalar ` W ) ) ) |
| 29 |
28
|
adantr |
|- ( ( ph /\ x e. M ) -> K = ( Base ` ( Scalar ` W ) ) ) |
| 30 |
24 29
|
eleqtrd |
|- ( ( ph /\ x e. M ) -> A e. ( Base ` ( Scalar ` W ) ) ) |
| 31 |
8 4
|
mgpbas |
|- B = ( Base ` G ) |
| 32 |
3
|
ply1ring |
|- ( R e. Ring -> W e. Ring ) |
| 33 |
20 32
|
syl |
|- ( ph -> W e. Ring ) |
| 34 |
8
|
ringmgp |
|- ( W e. Ring -> G e. Mnd ) |
| 35 |
33 34
|
syl |
|- ( ph -> G e. Mnd ) |
| 36 |
35
|
adantr |
|- ( ( ph /\ x e. M ) -> G e. Mnd ) |
| 37 |
16
|
r19.21bi |
|- ( ( ph /\ x e. M ) -> N e. NN0 ) |
| 38 |
20
|
adantr |
|- ( ( ph /\ x e. M ) -> R e. Ring ) |
| 39 |
5 3 4
|
vr1cl |
|- ( R e. Ring -> X e. B ) |
| 40 |
38 39
|
syl |
|- ( ( ph /\ x e. M ) -> X e. B ) |
| 41 |
31 9 36 37 40
|
mulgnn0cld |
|- ( ( ph /\ x e. M ) -> ( N .^ X ) e. B ) |
| 42 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 43 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 44 |
4 42 10 43
|
lmodvscl |
|- ( ( W e. LMod /\ A e. ( Base ` ( Scalar ` W ) ) /\ ( N .^ X ) e. B ) -> ( A .X. ( N .^ X ) ) e. B ) |
| 45 |
23 30 41 44
|
syl3anc |
|- ( ( ph /\ x e. M ) -> ( A .X. ( N .^ X ) ) e. B ) |
| 46 |
1 2 3 18 4 12 45 14 15 17
|
evl1gsumaddval |
|- ( ph -> ( ( Q ` ( W gsum ( x e. M |-> ( A .X. ( N .^ X ) ) ) ) ) ` C ) = ( R gsum ( x e. M |-> ( ( Q ` ( A .X. ( N .^ X ) ) ) ` C ) ) ) ) |
| 47 |
12
|
adantr |
|- ( ( ph /\ x e. M ) -> R e. CRing ) |
| 48 |
17
|
adantr |
|- ( ( ph /\ x e. M ) -> C e. K ) |
| 49 |
1 3 8 5 2 9 47 37 10 24 48 6 7 11
|
evl1scvarpwval |
|- ( ( ph /\ x e. M ) -> ( ( Q ` ( A .X. ( N .^ X ) ) ) ` C ) = ( A .x. ( N E C ) ) ) |
| 50 |
49
|
mpteq2dva |
|- ( ph -> ( x e. M |-> ( ( Q ` ( A .X. ( N .^ X ) ) ) ` C ) ) = ( x e. M |-> ( A .x. ( N E C ) ) ) ) |
| 51 |
50
|
oveq2d |
|- ( ph -> ( R gsum ( x e. M |-> ( ( Q ` ( A .X. ( N .^ X ) ) ) ` C ) ) ) = ( R gsum ( x e. M |-> ( A .x. ( N E C ) ) ) ) ) |
| 52 |
46 51
|
eqtrd |
|- ( ph -> ( ( Q ` ( W gsum ( x e. M |-> ( A .X. ( N .^ X ) ) ) ) ) ` C ) = ( R gsum ( x e. M |-> ( A .x. ( N E C ) ) ) ) ) |