Metamath Proof Explorer


Theorem evl1gsummon

Description: Value of a univariate polynomial evaluation mapping an additive group sum of a multiple of an exponentiation of a variable to a group sum of the multiple of the exponentiation of the evaluated variable. (Contributed by AV, 18-Sep-2019)

Ref Expression
Hypotheses evl1gsummon.q 𝑄 = ( eval1𝑅 )
evl1gsummon.k 𝐾 = ( Base ‘ 𝑅 )
evl1gsummon.w 𝑊 = ( Poly1𝑅 )
evl1gsummon.b 𝐵 = ( Base ‘ 𝑊 )
evl1gsummon.x 𝑋 = ( var1𝑅 )
evl1gsummon.h 𝐻 = ( mulGrp ‘ 𝑅 )
evl1gsummon.e 𝐸 = ( .g𝐻 )
evl1gsummon.g 𝐺 = ( mulGrp ‘ 𝑊 )
evl1gsummon.p = ( .g𝐺 )
evl1gsummon.t1 × = ( ·𝑠𝑊 )
evl1gsummon.t2 · = ( .r𝑅 )
evl1gsummon.r ( 𝜑𝑅 ∈ CRing )
evl1gsummon.a ( 𝜑 → ∀ 𝑥𝑀 𝐴𝐾 )
evl1gsummon.m ( 𝜑𝑀 ⊆ ℕ0 )
evl1gsummon.f ( 𝜑𝑀 ∈ Fin )
evl1gsummon.n ( 𝜑 → ∀ 𝑥𝑀 𝑁 ∈ ℕ0 )
evl1gsummon.c ( 𝜑𝐶𝐾 )
Assertion evl1gsummon ( 𝜑 → ( ( 𝑄 ‘ ( 𝑊 Σg ( 𝑥𝑀 ↦ ( 𝐴 × ( 𝑁 𝑋 ) ) ) ) ) ‘ 𝐶 ) = ( 𝑅 Σg ( 𝑥𝑀 ↦ ( 𝐴 · ( 𝑁 𝐸 𝐶 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 evl1gsummon.q 𝑄 = ( eval1𝑅 )
2 evl1gsummon.k 𝐾 = ( Base ‘ 𝑅 )
3 evl1gsummon.w 𝑊 = ( Poly1𝑅 )
4 evl1gsummon.b 𝐵 = ( Base ‘ 𝑊 )
5 evl1gsummon.x 𝑋 = ( var1𝑅 )
6 evl1gsummon.h 𝐻 = ( mulGrp ‘ 𝑅 )
7 evl1gsummon.e 𝐸 = ( .g𝐻 )
8 evl1gsummon.g 𝐺 = ( mulGrp ‘ 𝑊 )
9 evl1gsummon.p = ( .g𝐺 )
10 evl1gsummon.t1 × = ( ·𝑠𝑊 )
11 evl1gsummon.t2 · = ( .r𝑅 )
12 evl1gsummon.r ( 𝜑𝑅 ∈ CRing )
13 evl1gsummon.a ( 𝜑 → ∀ 𝑥𝑀 𝐴𝐾 )
14 evl1gsummon.m ( 𝜑𝑀 ⊆ ℕ0 )
15 evl1gsummon.f ( 𝜑𝑀 ∈ Fin )
16 evl1gsummon.n ( 𝜑 → ∀ 𝑥𝑀 𝑁 ∈ ℕ0 )
17 evl1gsummon.c ( 𝜑𝐶𝐾 )
18 eqid ( 𝑅s 𝐾 ) = ( 𝑅s 𝐾 )
19 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
20 12 19 syl ( 𝜑𝑅 ∈ Ring )
21 3 ply1lmod ( 𝑅 ∈ Ring → 𝑊 ∈ LMod )
22 20 21 syl ( 𝜑𝑊 ∈ LMod )
23 22 adantr ( ( 𝜑𝑥𝑀 ) → 𝑊 ∈ LMod )
24 13 r19.21bi ( ( 𝜑𝑥𝑀 ) → 𝐴𝐾 )
25 3 ply1sca ( 𝑅 ∈ CRing → 𝑅 = ( Scalar ‘ 𝑊 ) )
26 12 25 syl ( 𝜑𝑅 = ( Scalar ‘ 𝑊 ) )
27 26 fveq2d ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
28 2 27 eqtrid ( 𝜑𝐾 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
29 28 adantr ( ( 𝜑𝑥𝑀 ) → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
30 24 29 eleqtrd ( ( 𝜑𝑥𝑀 ) → 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
31 3 ply1ring ( 𝑅 ∈ Ring → 𝑊 ∈ Ring )
32 20 31 syl ( 𝜑𝑊 ∈ Ring )
33 8 ringmgp ( 𝑊 ∈ Ring → 𝐺 ∈ Mnd )
34 32 33 syl ( 𝜑𝐺 ∈ Mnd )
35 34 adantr ( ( 𝜑𝑥𝑀 ) → 𝐺 ∈ Mnd )
36 16 r19.21bi ( ( 𝜑𝑥𝑀 ) → 𝑁 ∈ ℕ0 )
37 20 adantr ( ( 𝜑𝑥𝑀 ) → 𝑅 ∈ Ring )
38 5 3 4 vr1cl ( 𝑅 ∈ Ring → 𝑋𝐵 )
39 37 38 syl ( ( 𝜑𝑥𝑀 ) → 𝑋𝐵 )
40 8 4 mgpbas 𝐵 = ( Base ‘ 𝐺 )
41 40 9 mulgnn0cl ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵 ) → ( 𝑁 𝑋 ) ∈ 𝐵 )
42 35 36 39 41 syl3anc ( ( 𝜑𝑥𝑀 ) → ( 𝑁 𝑋 ) ∈ 𝐵 )
43 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
44 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
45 4 43 10 44 lmodvscl ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑁 𝑋 ) ∈ 𝐵 ) → ( 𝐴 × ( 𝑁 𝑋 ) ) ∈ 𝐵 )
46 23 30 42 45 syl3anc ( ( 𝜑𝑥𝑀 ) → ( 𝐴 × ( 𝑁 𝑋 ) ) ∈ 𝐵 )
47 1 2 3 18 4 12 46 14 15 17 evl1gsumaddval ( 𝜑 → ( ( 𝑄 ‘ ( 𝑊 Σg ( 𝑥𝑀 ↦ ( 𝐴 × ( 𝑁 𝑋 ) ) ) ) ) ‘ 𝐶 ) = ( 𝑅 Σg ( 𝑥𝑀 ↦ ( ( 𝑄 ‘ ( 𝐴 × ( 𝑁 𝑋 ) ) ) ‘ 𝐶 ) ) ) )
48 12 adantr ( ( 𝜑𝑥𝑀 ) → 𝑅 ∈ CRing )
49 17 adantr ( ( 𝜑𝑥𝑀 ) → 𝐶𝐾 )
50 1 3 8 5 2 9 48 36 10 24 49 6 7 11 evl1scvarpwval ( ( 𝜑𝑥𝑀 ) → ( ( 𝑄 ‘ ( 𝐴 × ( 𝑁 𝑋 ) ) ) ‘ 𝐶 ) = ( 𝐴 · ( 𝑁 𝐸 𝐶 ) ) )
51 50 mpteq2dva ( 𝜑 → ( 𝑥𝑀 ↦ ( ( 𝑄 ‘ ( 𝐴 × ( 𝑁 𝑋 ) ) ) ‘ 𝐶 ) ) = ( 𝑥𝑀 ↦ ( 𝐴 · ( 𝑁 𝐸 𝐶 ) ) ) )
52 51 oveq2d ( 𝜑 → ( 𝑅 Σg ( 𝑥𝑀 ↦ ( ( 𝑄 ‘ ( 𝐴 × ( 𝑁 𝑋 ) ) ) ‘ 𝐶 ) ) ) = ( 𝑅 Σg ( 𝑥𝑀 ↦ ( 𝐴 · ( 𝑁 𝐸 𝐶 ) ) ) ) )
53 47 52 eqtrd ( 𝜑 → ( ( 𝑄 ‘ ( 𝑊 Σg ( 𝑥𝑀 ↦ ( 𝐴 × ( 𝑁 𝑋 ) ) ) ) ) ‘ 𝐶 ) = ( 𝑅 Σg ( 𝑥𝑀 ↦ ( 𝐴 · ( 𝑁 𝐸 𝐶 ) ) ) ) )