Metamath Proof Explorer


Theorem evl1scvarpwval

Description: Value of a univariate polynomial evaluation mapping a multiple of an exponentiation of a variable to the multiple of the exponentiation of the evaluated variable. (Contributed by AV, 18-Sep-2019)

Ref Expression
Hypotheses evl1varpw.q Q = eval 1 R
evl1varpw.w W = Poly 1 R
evl1varpw.g G = mulGrp W
evl1varpw.x X = var 1 R
evl1varpw.b B = Base R
evl1varpw.e × ˙ = G
evl1varpw.r φ R CRing
evl1varpw.n φ N 0
evl1scvarpw.t1 × ˙ = W
evl1scvarpw.a φ A B
evl1scvarpwval.c φ C B
evl1scvarpwval.h H = mulGrp R
evl1scvarpwval.e E = H
evl1scvarpwval.t · ˙ = R
Assertion evl1scvarpwval φ Q A × ˙ N × ˙ X C = A · ˙ N E C

Proof

Step Hyp Ref Expression
1 evl1varpw.q Q = eval 1 R
2 evl1varpw.w W = Poly 1 R
3 evl1varpw.g G = mulGrp W
4 evl1varpw.x X = var 1 R
5 evl1varpw.b B = Base R
6 evl1varpw.e × ˙ = G
7 evl1varpw.r φ R CRing
8 evl1varpw.n φ N 0
9 evl1scvarpw.t1 × ˙ = W
10 evl1scvarpw.a φ A B
11 evl1scvarpwval.c φ C B
12 evl1scvarpwval.h H = mulGrp R
13 evl1scvarpwval.e E = H
14 evl1scvarpwval.t · ˙ = R
15 eqid Base W = Base W
16 crngring R CRing R Ring
17 7 16 syl φ R Ring
18 2 ply1ring R Ring W Ring
19 17 18 syl φ W Ring
20 3 ringmgp W Ring G Mnd
21 19 20 syl φ G Mnd
22 4 2 15 vr1cl R Ring X Base W
23 17 22 syl φ X Base W
24 3 15 mgpbas Base W = Base G
25 24 6 mulgnn0cl G Mnd N 0 X Base W N × ˙ X Base W
26 21 8 23 25 syl3anc φ N × ˙ X Base W
27 1 2 3 4 5 6 7 8 11 12 13 evl1varpwval φ Q N × ˙ X C = N E C
28 26 27 jca φ N × ˙ X Base W Q N × ˙ X C = N E C
29 1 2 5 15 7 11 28 10 9 14 evl1vsd φ A × ˙ N × ˙ X Base W Q A × ˙ N × ˙ X C = A · ˙ N E C
30 29 simprd φ Q A × ˙ N × ˙ X C = A · ˙ N E C