| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ficardadju |  |-  ( ( A e. Fin /\ B e. Fin ) -> ( A |_| B ) ~~ ( ( card ` A ) +o ( card ` B ) ) ) | 
						
							| 2 | 1 | 3adant3 |  |-  ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( A |_| B ) ~~ ( ( card ` A ) +o ( card ` B ) ) ) | 
						
							| 3 | 2 | ensymd |  |-  ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( ( card ` A ) +o ( card ` B ) ) ~~ ( A |_| B ) ) | 
						
							| 4 |  | endjudisj |  |-  ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( A |_| B ) ~~ ( A u. B ) ) | 
						
							| 5 |  | entr |  |-  ( ( ( ( card ` A ) +o ( card ` B ) ) ~~ ( A |_| B ) /\ ( A |_| B ) ~~ ( A u. B ) ) -> ( ( card ` A ) +o ( card ` B ) ) ~~ ( A u. B ) ) | 
						
							| 6 | 3 4 5 | syl2anc |  |-  ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( ( card ` A ) +o ( card ` B ) ) ~~ ( A u. B ) ) | 
						
							| 7 |  | carden2b |  |-  ( ( ( card ` A ) +o ( card ` B ) ) ~~ ( A u. B ) -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( card ` ( A u. B ) ) ) | 
						
							| 8 | 6 7 | syl |  |-  ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( card ` ( A u. B ) ) ) | 
						
							| 9 |  | ficardom |  |-  ( A e. Fin -> ( card ` A ) e. _om ) | 
						
							| 10 |  | ficardom |  |-  ( B e. Fin -> ( card ` B ) e. _om ) | 
						
							| 11 |  | nnacl |  |-  ( ( ( card ` A ) e. _om /\ ( card ` B ) e. _om ) -> ( ( card ` A ) +o ( card ` B ) ) e. _om ) | 
						
							| 12 |  | cardnn |  |-  ( ( ( card ` A ) +o ( card ` B ) ) e. _om -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( ( card ` A ) +o ( card ` B ) ) ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( ( card ` A ) e. _om /\ ( card ` B ) e. _om ) -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( ( card ` A ) +o ( card ` B ) ) ) | 
						
							| 14 | 9 10 13 | syl2an |  |-  ( ( A e. Fin /\ B e. Fin ) -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( ( card ` A ) +o ( card ` B ) ) ) | 
						
							| 15 | 14 | 3adant3 |  |-  ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( ( card ` A ) +o ( card ` B ) ) ) | 
						
							| 16 | 8 15 | eqtr3d |  |-  ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( card ` ( A u. B ) ) = ( ( card ` A ) +o ( card ` B ) ) ) |