| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ficardom |  |-  ( A e. Fin -> ( card ` A ) e. _om ) | 
						
							| 2 |  | ficardom |  |-  ( B e. Fin -> ( card ` B ) e. _om ) | 
						
							| 3 |  | nnadju |  |-  ( ( ( card ` A ) e. _om /\ ( card ` B ) e. _om ) -> ( card ` ( ( card ` A ) |_| ( card ` B ) ) ) = ( ( card ` A ) +o ( card ` B ) ) ) | 
						
							| 4 |  | df-dju |  |-  ( ( card ` A ) |_| ( card ` B ) ) = ( ( { (/) } X. ( card ` A ) ) u. ( { 1o } X. ( card ` B ) ) ) | 
						
							| 5 |  | snfi |  |-  { (/) } e. Fin | 
						
							| 6 |  | nnfi |  |-  ( ( card ` A ) e. _om -> ( card ` A ) e. Fin ) | 
						
							| 7 |  | xpfi |  |-  ( ( { (/) } e. Fin /\ ( card ` A ) e. Fin ) -> ( { (/) } X. ( card ` A ) ) e. Fin ) | 
						
							| 8 | 5 6 7 | sylancr |  |-  ( ( card ` A ) e. _om -> ( { (/) } X. ( card ` A ) ) e. Fin ) | 
						
							| 9 |  | snfi |  |-  { 1o } e. Fin | 
						
							| 10 |  | nnfi |  |-  ( ( card ` B ) e. _om -> ( card ` B ) e. Fin ) | 
						
							| 11 |  | xpfi |  |-  ( ( { 1o } e. Fin /\ ( card ` B ) e. Fin ) -> ( { 1o } X. ( card ` B ) ) e. Fin ) | 
						
							| 12 | 9 10 11 | sylancr |  |-  ( ( card ` B ) e. _om -> ( { 1o } X. ( card ` B ) ) e. Fin ) | 
						
							| 13 |  | unfi |  |-  ( ( ( { (/) } X. ( card ` A ) ) e. Fin /\ ( { 1o } X. ( card ` B ) ) e. Fin ) -> ( ( { (/) } X. ( card ` A ) ) u. ( { 1o } X. ( card ` B ) ) ) e. Fin ) | 
						
							| 14 | 8 12 13 | syl2an |  |-  ( ( ( card ` A ) e. _om /\ ( card ` B ) e. _om ) -> ( ( { (/) } X. ( card ` A ) ) u. ( { 1o } X. ( card ` B ) ) ) e. Fin ) | 
						
							| 15 | 4 14 | eqeltrid |  |-  ( ( ( card ` A ) e. _om /\ ( card ` B ) e. _om ) -> ( ( card ` A ) |_| ( card ` B ) ) e. Fin ) | 
						
							| 16 |  | ficardid |  |-  ( ( ( card ` A ) |_| ( card ` B ) ) e. Fin -> ( card ` ( ( card ` A ) |_| ( card ` B ) ) ) ~~ ( ( card ` A ) |_| ( card ` B ) ) ) | 
						
							| 17 | 15 16 | syl |  |-  ( ( ( card ` A ) e. _om /\ ( card ` B ) e. _om ) -> ( card ` ( ( card ` A ) |_| ( card ` B ) ) ) ~~ ( ( card ` A ) |_| ( card ` B ) ) ) | 
						
							| 18 | 3 17 | eqbrtrrd |  |-  ( ( ( card ` A ) e. _om /\ ( card ` B ) e. _om ) -> ( ( card ` A ) +o ( card ` B ) ) ~~ ( ( card ` A ) |_| ( card ` B ) ) ) | 
						
							| 19 | 1 2 18 | syl2an |  |-  ( ( A e. Fin /\ B e. Fin ) -> ( ( card ` A ) +o ( card ` B ) ) ~~ ( ( card ` A ) |_| ( card ` B ) ) ) | 
						
							| 20 |  | ficardid |  |-  ( A e. Fin -> ( card ` A ) ~~ A ) | 
						
							| 21 |  | ficardid |  |-  ( B e. Fin -> ( card ` B ) ~~ B ) | 
						
							| 22 |  | djuen |  |-  ( ( ( card ` A ) ~~ A /\ ( card ` B ) ~~ B ) -> ( ( card ` A ) |_| ( card ` B ) ) ~~ ( A |_| B ) ) | 
						
							| 23 | 20 21 22 | syl2an |  |-  ( ( A e. Fin /\ B e. Fin ) -> ( ( card ` A ) |_| ( card ` B ) ) ~~ ( A |_| B ) ) | 
						
							| 24 |  | entr |  |-  ( ( ( ( card ` A ) +o ( card ` B ) ) ~~ ( ( card ` A ) |_| ( card ` B ) ) /\ ( ( card ` A ) |_| ( card ` B ) ) ~~ ( A |_| B ) ) -> ( ( card ` A ) +o ( card ` B ) ) ~~ ( A |_| B ) ) | 
						
							| 25 | 19 23 24 | syl2anc |  |-  ( ( A e. Fin /\ B e. Fin ) -> ( ( card ` A ) +o ( card ` B ) ) ~~ ( A |_| B ) ) | 
						
							| 26 | 25 | ensymd |  |-  ( ( A e. Fin /\ B e. Fin ) -> ( A |_| B ) ~~ ( ( card ` A ) +o ( card ` B ) ) ) |