| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ficardom | ⊢ ( 𝐴  ∈  Fin  →  ( card ‘ 𝐴 )  ∈  ω ) | 
						
							| 2 |  | ficardom | ⊢ ( 𝐵  ∈  Fin  →  ( card ‘ 𝐵 )  ∈  ω ) | 
						
							| 3 |  | nnadju | ⊢ ( ( ( card ‘ 𝐴 )  ∈  ω  ∧  ( card ‘ 𝐵 )  ∈  ω )  →  ( card ‘ ( ( card ‘ 𝐴 )  ⊔  ( card ‘ 𝐵 ) ) )  =  ( ( card ‘ 𝐴 )  +o  ( card ‘ 𝐵 ) ) ) | 
						
							| 4 |  | df-dju | ⊢ ( ( card ‘ 𝐴 )  ⊔  ( card ‘ 𝐵 ) )  =  ( ( { ∅ }  ×  ( card ‘ 𝐴 ) )  ∪  ( { 1o }  ×  ( card ‘ 𝐵 ) ) ) | 
						
							| 5 |  | snfi | ⊢ { ∅ }  ∈  Fin | 
						
							| 6 |  | nnfi | ⊢ ( ( card ‘ 𝐴 )  ∈  ω  →  ( card ‘ 𝐴 )  ∈  Fin ) | 
						
							| 7 |  | xpfi | ⊢ ( ( { ∅ }  ∈  Fin  ∧  ( card ‘ 𝐴 )  ∈  Fin )  →  ( { ∅ }  ×  ( card ‘ 𝐴 ) )  ∈  Fin ) | 
						
							| 8 | 5 6 7 | sylancr | ⊢ ( ( card ‘ 𝐴 )  ∈  ω  →  ( { ∅ }  ×  ( card ‘ 𝐴 ) )  ∈  Fin ) | 
						
							| 9 |  | snfi | ⊢ { 1o }  ∈  Fin | 
						
							| 10 |  | nnfi | ⊢ ( ( card ‘ 𝐵 )  ∈  ω  →  ( card ‘ 𝐵 )  ∈  Fin ) | 
						
							| 11 |  | xpfi | ⊢ ( ( { 1o }  ∈  Fin  ∧  ( card ‘ 𝐵 )  ∈  Fin )  →  ( { 1o }  ×  ( card ‘ 𝐵 ) )  ∈  Fin ) | 
						
							| 12 | 9 10 11 | sylancr | ⊢ ( ( card ‘ 𝐵 )  ∈  ω  →  ( { 1o }  ×  ( card ‘ 𝐵 ) )  ∈  Fin ) | 
						
							| 13 |  | unfi | ⊢ ( ( ( { ∅ }  ×  ( card ‘ 𝐴 ) )  ∈  Fin  ∧  ( { 1o }  ×  ( card ‘ 𝐵 ) )  ∈  Fin )  →  ( ( { ∅ }  ×  ( card ‘ 𝐴 ) )  ∪  ( { 1o }  ×  ( card ‘ 𝐵 ) ) )  ∈  Fin ) | 
						
							| 14 | 8 12 13 | syl2an | ⊢ ( ( ( card ‘ 𝐴 )  ∈  ω  ∧  ( card ‘ 𝐵 )  ∈  ω )  →  ( ( { ∅ }  ×  ( card ‘ 𝐴 ) )  ∪  ( { 1o }  ×  ( card ‘ 𝐵 ) ) )  ∈  Fin ) | 
						
							| 15 | 4 14 | eqeltrid | ⊢ ( ( ( card ‘ 𝐴 )  ∈  ω  ∧  ( card ‘ 𝐵 )  ∈  ω )  →  ( ( card ‘ 𝐴 )  ⊔  ( card ‘ 𝐵 ) )  ∈  Fin ) | 
						
							| 16 |  | ficardid | ⊢ ( ( ( card ‘ 𝐴 )  ⊔  ( card ‘ 𝐵 ) )  ∈  Fin  →  ( card ‘ ( ( card ‘ 𝐴 )  ⊔  ( card ‘ 𝐵 ) ) )  ≈  ( ( card ‘ 𝐴 )  ⊔  ( card ‘ 𝐵 ) ) ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( ( card ‘ 𝐴 )  ∈  ω  ∧  ( card ‘ 𝐵 )  ∈  ω )  →  ( card ‘ ( ( card ‘ 𝐴 )  ⊔  ( card ‘ 𝐵 ) ) )  ≈  ( ( card ‘ 𝐴 )  ⊔  ( card ‘ 𝐵 ) ) ) | 
						
							| 18 | 3 17 | eqbrtrrd | ⊢ ( ( ( card ‘ 𝐴 )  ∈  ω  ∧  ( card ‘ 𝐵 )  ∈  ω )  →  ( ( card ‘ 𝐴 )  +o  ( card ‘ 𝐵 ) )  ≈  ( ( card ‘ 𝐴 )  ⊔  ( card ‘ 𝐵 ) ) ) | 
						
							| 19 | 1 2 18 | syl2an | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin )  →  ( ( card ‘ 𝐴 )  +o  ( card ‘ 𝐵 ) )  ≈  ( ( card ‘ 𝐴 )  ⊔  ( card ‘ 𝐵 ) ) ) | 
						
							| 20 |  | ficardid | ⊢ ( 𝐴  ∈  Fin  →  ( card ‘ 𝐴 )  ≈  𝐴 ) | 
						
							| 21 |  | ficardid | ⊢ ( 𝐵  ∈  Fin  →  ( card ‘ 𝐵 )  ≈  𝐵 ) | 
						
							| 22 |  | djuen | ⊢ ( ( ( card ‘ 𝐴 )  ≈  𝐴  ∧  ( card ‘ 𝐵 )  ≈  𝐵 )  →  ( ( card ‘ 𝐴 )  ⊔  ( card ‘ 𝐵 ) )  ≈  ( 𝐴  ⊔  𝐵 ) ) | 
						
							| 23 | 20 21 22 | syl2an | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin )  →  ( ( card ‘ 𝐴 )  ⊔  ( card ‘ 𝐵 ) )  ≈  ( 𝐴  ⊔  𝐵 ) ) | 
						
							| 24 |  | entr | ⊢ ( ( ( ( card ‘ 𝐴 )  +o  ( card ‘ 𝐵 ) )  ≈  ( ( card ‘ 𝐴 )  ⊔  ( card ‘ 𝐵 ) )  ∧  ( ( card ‘ 𝐴 )  ⊔  ( card ‘ 𝐵 ) )  ≈  ( 𝐴  ⊔  𝐵 ) )  →  ( ( card ‘ 𝐴 )  +o  ( card ‘ 𝐵 ) )  ≈  ( 𝐴  ⊔  𝐵 ) ) | 
						
							| 25 | 19 23 24 | syl2anc | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin )  →  ( ( card ‘ 𝐴 )  +o  ( card ‘ 𝐵 ) )  ≈  ( 𝐴  ⊔  𝐵 ) ) | 
						
							| 26 | 25 | ensymd | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin )  →  ( 𝐴  ⊔  𝐵 )  ≈  ( ( card ‘ 𝐴 )  +o  ( card ‘ 𝐵 ) ) ) |