| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isfin6 |
|- ( A e. Fin6 <-> ( A ~< 2o \/ A ~< ( A X. A ) ) ) |
| 2 |
|
2onn |
|- 2o e. _om |
| 3 |
|
ssid |
|- 2o C_ 2o |
| 4 |
|
ssnnfi |
|- ( ( 2o e. _om /\ 2o C_ 2o ) -> 2o e. Fin ) |
| 5 |
2 3 4
|
mp2an |
|- 2o e. Fin |
| 6 |
|
sdomdom |
|- ( A ~< 2o -> A ~<_ 2o ) |
| 7 |
|
domfi |
|- ( ( 2o e. Fin /\ A ~<_ 2o ) -> A e. Fin ) |
| 8 |
5 6 7
|
sylancr |
|- ( A ~< 2o -> A e. Fin ) |
| 9 |
|
fin17 |
|- ( A e. Fin -> A e. Fin7 ) |
| 10 |
8 9
|
syl |
|- ( A ~< 2o -> A e. Fin7 ) |
| 11 |
|
sdomnen |
|- ( A ~< ( A X. A ) -> -. A ~~ ( A X. A ) ) |
| 12 |
|
eldifi |
|- ( b e. ( On \ _om ) -> b e. On ) |
| 13 |
|
ensym |
|- ( A ~~ b -> b ~~ A ) |
| 14 |
|
isnumi |
|- ( ( b e. On /\ b ~~ A ) -> A e. dom card ) |
| 15 |
12 13 14
|
syl2an |
|- ( ( b e. ( On \ _om ) /\ A ~~ b ) -> A e. dom card ) |
| 16 |
|
vex |
|- b e. _V |
| 17 |
|
eldif |
|- ( b e. ( On \ _om ) <-> ( b e. On /\ -. b e. _om ) ) |
| 18 |
|
ordom |
|- Ord _om |
| 19 |
|
eloni |
|- ( b e. On -> Ord b ) |
| 20 |
|
ordtri1 |
|- ( ( Ord _om /\ Ord b ) -> ( _om C_ b <-> -. b e. _om ) ) |
| 21 |
18 19 20
|
sylancr |
|- ( b e. On -> ( _om C_ b <-> -. b e. _om ) ) |
| 22 |
21
|
biimpar |
|- ( ( b e. On /\ -. b e. _om ) -> _om C_ b ) |
| 23 |
17 22
|
sylbi |
|- ( b e. ( On \ _om ) -> _om C_ b ) |
| 24 |
|
ssdomg |
|- ( b e. _V -> ( _om C_ b -> _om ~<_ b ) ) |
| 25 |
16 23 24
|
mpsyl |
|- ( b e. ( On \ _om ) -> _om ~<_ b ) |
| 26 |
|
domen2 |
|- ( A ~~ b -> ( _om ~<_ A <-> _om ~<_ b ) ) |
| 27 |
25 26
|
imbitrrid |
|- ( A ~~ b -> ( b e. ( On \ _om ) -> _om ~<_ A ) ) |
| 28 |
27
|
impcom |
|- ( ( b e. ( On \ _om ) /\ A ~~ b ) -> _om ~<_ A ) |
| 29 |
|
infxpidm2 |
|- ( ( A e. dom card /\ _om ~<_ A ) -> ( A X. A ) ~~ A ) |
| 30 |
15 28 29
|
syl2anc |
|- ( ( b e. ( On \ _om ) /\ A ~~ b ) -> ( A X. A ) ~~ A ) |
| 31 |
|
ensym |
|- ( ( A X. A ) ~~ A -> A ~~ ( A X. A ) ) |
| 32 |
30 31
|
syl |
|- ( ( b e. ( On \ _om ) /\ A ~~ b ) -> A ~~ ( A X. A ) ) |
| 33 |
32
|
rexlimiva |
|- ( E. b e. ( On \ _om ) A ~~ b -> A ~~ ( A X. A ) ) |
| 34 |
11 33
|
nsyl |
|- ( A ~< ( A X. A ) -> -. E. b e. ( On \ _om ) A ~~ b ) |
| 35 |
|
relsdom |
|- Rel ~< |
| 36 |
35
|
brrelex1i |
|- ( A ~< ( A X. A ) -> A e. _V ) |
| 37 |
|
isfin7 |
|- ( A e. _V -> ( A e. Fin7 <-> -. E. b e. ( On \ _om ) A ~~ b ) ) |
| 38 |
36 37
|
syl |
|- ( A ~< ( A X. A ) -> ( A e. Fin7 <-> -. E. b e. ( On \ _om ) A ~~ b ) ) |
| 39 |
34 38
|
mpbird |
|- ( A ~< ( A X. A ) -> A e. Fin7 ) |
| 40 |
10 39
|
jaoi |
|- ( ( A ~< 2o \/ A ~< ( A X. A ) ) -> A e. Fin7 ) |
| 41 |
1 40
|
sylbi |
|- ( A e. Fin6 -> A e. Fin7 ) |