Metamath Proof Explorer


Theorem fineqvacALT

Description: Shorter proof of fineqvac using ax-rep and ax-pow . (Contributed by BTernaryTau, 21-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion fineqvacALT
|- ( Fin = _V -> CHOICE )

Proof

Step Hyp Ref Expression
1 ssv
 |-  dom card C_ _V
2 1 a1i
 |-  ( Fin = _V -> dom card C_ _V )
3 finnum
 |-  ( x e. Fin -> x e. dom card )
4 3 ssriv
 |-  Fin C_ dom card
5 sseq1
 |-  ( Fin = _V -> ( Fin C_ dom card <-> _V C_ dom card ) )
6 4 5 mpbii
 |-  ( Fin = _V -> _V C_ dom card )
7 2 6 eqssd
 |-  ( Fin = _V -> dom card = _V )
8 dfac10
 |-  ( CHOICE <-> dom card = _V )
9 7 8 sylibr
 |-  ( Fin = _V -> CHOICE )