Metamath Proof Explorer


Theorem fineqvacALT

Description: Shorter proof of fineqvac using ax-rep and ax-pow . (Contributed by BTernaryTau, 21-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion fineqvacALT ( Fin = V → CHOICE )

Proof

Step Hyp Ref Expression
1 ssv dom card ⊆ V
2 1 a1i ( Fin = V → dom card ⊆ V )
3 finnum ( 𝑥 ∈ Fin → 𝑥 ∈ dom card )
4 3 ssriv Fin ⊆ dom card
5 sseq1 ( Fin = V → ( Fin ⊆ dom card ↔ V ⊆ dom card ) )
6 4 5 mpbii ( Fin = V → V ⊆ dom card )
7 2 6 eqssd ( Fin = V → dom card = V )
8 dfac10 ( CHOICE ↔ dom card = V )
9 7 8 sylibr ( Fin = V → CHOICE )