| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
⊢ 𝑤 ∈ V |
| 2 |
|
eleq2w2 |
⊢ ( Fin = V → ( 𝑤 ∈ Fin ↔ 𝑤 ∈ V ) ) |
| 3 |
1 2
|
mpbiri |
⊢ ( Fin = V → 𝑤 ∈ Fin ) |
| 4 |
|
sseq2 |
⊢ ( 𝑥 = ∅ → ( 𝑓 ⊆ 𝑥 ↔ 𝑓 ⊆ ∅ ) ) |
| 5 |
|
dmeq |
⊢ ( 𝑥 = ∅ → dom 𝑥 = dom ∅ ) |
| 6 |
5
|
fneq2d |
⊢ ( 𝑥 = ∅ → ( 𝑓 Fn dom 𝑥 ↔ 𝑓 Fn dom ∅ ) ) |
| 7 |
4 6
|
anbi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥 ) ↔ ( 𝑓 ⊆ ∅ ∧ 𝑓 Fn dom ∅ ) ) ) |
| 8 |
7
|
exbidv |
⊢ ( 𝑥 = ∅ → ( ∃ 𝑓 ( 𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥 ) ↔ ∃ 𝑓 ( 𝑓 ⊆ ∅ ∧ 𝑓 Fn dom ∅ ) ) ) |
| 9 |
|
sseq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑓 ⊆ 𝑥 ↔ 𝑓 ⊆ 𝑦 ) ) |
| 10 |
|
dmeq |
⊢ ( 𝑥 = 𝑦 → dom 𝑥 = dom 𝑦 ) |
| 11 |
10
|
fneq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑓 Fn dom 𝑥 ↔ 𝑓 Fn dom 𝑦 ) ) |
| 12 |
9 11
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥 ) ↔ ( 𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦 ) ) ) |
| 13 |
12
|
exbidv |
⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑓 ( 𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥 ) ↔ ∃ 𝑓 ( 𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦 ) ) ) |
| 14 |
|
sseq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑓 ⊆ 𝑥 ↔ 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 15 |
|
dmeq |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → dom 𝑥 = dom ( 𝑦 ∪ { 𝑧 } ) ) |
| 16 |
15
|
fneq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑓 Fn dom 𝑥 ↔ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 17 |
14 16
|
anbi12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥 ) ↔ ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 18 |
17
|
exbidv |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∃ 𝑓 ( 𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥 ) ↔ ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 19 |
|
sseq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝑓 ⊆ 𝑥 ↔ 𝑓 ⊆ 𝑤 ) ) |
| 20 |
|
dmeq |
⊢ ( 𝑥 = 𝑤 → dom 𝑥 = dom 𝑤 ) |
| 21 |
20
|
fneq2d |
⊢ ( 𝑥 = 𝑤 → ( 𝑓 Fn dom 𝑥 ↔ 𝑓 Fn dom 𝑤 ) ) |
| 22 |
19 21
|
anbi12d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥 ) ↔ ( 𝑓 ⊆ 𝑤 ∧ 𝑓 Fn dom 𝑤 ) ) ) |
| 23 |
22
|
exbidv |
⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑓 ( 𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥 ) ↔ ∃ 𝑓 ( 𝑓 ⊆ 𝑤 ∧ 𝑓 Fn dom 𝑤 ) ) ) |
| 24 |
|
ssid |
⊢ ∅ ⊆ ∅ |
| 25 |
|
fun0 |
⊢ Fun ∅ |
| 26 |
|
funfn |
⊢ ( Fun ∅ ↔ ∅ Fn dom ∅ ) |
| 27 |
25 26
|
mpbi |
⊢ ∅ Fn dom ∅ |
| 28 |
|
0ex |
⊢ ∅ ∈ V |
| 29 |
|
sseq1 |
⊢ ( 𝑓 = ∅ → ( 𝑓 ⊆ ∅ ↔ ∅ ⊆ ∅ ) ) |
| 30 |
|
fneq1 |
⊢ ( 𝑓 = ∅ → ( 𝑓 Fn dom ∅ ↔ ∅ Fn dom ∅ ) ) |
| 31 |
29 30
|
anbi12d |
⊢ ( 𝑓 = ∅ → ( ( 𝑓 ⊆ ∅ ∧ 𝑓 Fn dom ∅ ) ↔ ( ∅ ⊆ ∅ ∧ ∅ Fn dom ∅ ) ) ) |
| 32 |
28 31
|
spcev |
⊢ ( ( ∅ ⊆ ∅ ∧ ∅ Fn dom ∅ ) → ∃ 𝑓 ( 𝑓 ⊆ ∅ ∧ 𝑓 Fn dom ∅ ) ) |
| 33 |
24 27 32
|
mp2an |
⊢ ∃ 𝑓 ( 𝑓 ⊆ ∅ ∧ 𝑓 Fn dom ∅ ) |
| 34 |
|
sseq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ⊆ 𝑦 ↔ 𝑔 ⊆ 𝑦 ) ) |
| 35 |
|
fneq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 Fn dom 𝑦 ↔ 𝑔 Fn dom 𝑦 ) ) |
| 36 |
34 35
|
anbi12d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦 ) ↔ ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ) ) |
| 37 |
36
|
cbvexvw |
⊢ ( ∃ 𝑓 ( 𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦 ) ↔ ∃ 𝑔 ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ) |
| 38 |
|
ssun3 |
⊢ ( 𝑔 ⊆ 𝑦 → 𝑔 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) |
| 39 |
38
|
ad2antrr |
⊢ ( ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ∧ dom { 𝑧 } = ∅ ) → 𝑔 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) |
| 40 |
|
dmun |
⊢ dom ( 𝑦 ∪ { 𝑧 } ) = ( dom 𝑦 ∪ dom { 𝑧 } ) |
| 41 |
|
uneq2 |
⊢ ( dom { 𝑧 } = ∅ → ( dom 𝑦 ∪ dom { 𝑧 } ) = ( dom 𝑦 ∪ ∅ ) ) |
| 42 |
|
un0 |
⊢ ( dom 𝑦 ∪ ∅ ) = dom 𝑦 |
| 43 |
41 42
|
eqtrdi |
⊢ ( dom { 𝑧 } = ∅ → ( dom 𝑦 ∪ dom { 𝑧 } ) = dom 𝑦 ) |
| 44 |
40 43
|
eqtrid |
⊢ ( dom { 𝑧 } = ∅ → dom ( 𝑦 ∪ { 𝑧 } ) = dom 𝑦 ) |
| 45 |
44
|
fneq2d |
⊢ ( dom { 𝑧 } = ∅ → ( 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) ↔ 𝑔 Fn dom 𝑦 ) ) |
| 46 |
45
|
biimparc |
⊢ ( ( 𝑔 Fn dom 𝑦 ∧ dom { 𝑧 } = ∅ ) → 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) |
| 47 |
46
|
adantll |
⊢ ( ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ∧ dom { 𝑧 } = ∅ ) → 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) |
| 48 |
|
vex |
⊢ 𝑔 ∈ V |
| 49 |
|
sseq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ↔ 𝑔 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 50 |
|
fneq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ↔ 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 51 |
49 50
|
anbi12d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ↔ ( 𝑔 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 52 |
48 51
|
spcev |
⊢ ( ( 𝑔 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 53 |
39 47 52
|
syl2anc |
⊢ ( ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ∧ dom { 𝑧 } = ∅ ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 54 |
|
dmsnn0 |
⊢ ( 𝑧 ∈ ( V × V ) ↔ dom { 𝑧 } ≠ ∅ ) |
| 55 |
|
elvv |
⊢ ( 𝑧 ∈ ( V × V ) ↔ ∃ 𝑢 ∃ 𝑣 𝑧 = 〈 𝑢 , 𝑣 〉 ) |
| 56 |
54 55
|
bitr3i |
⊢ ( dom { 𝑧 } ≠ ∅ ↔ ∃ 𝑢 ∃ 𝑣 𝑧 = 〈 𝑢 , 𝑣 〉 ) |
| 57 |
56
|
anbi2i |
⊢ ( ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ∧ dom { 𝑧 } ≠ ∅ ) ↔ ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ∧ ∃ 𝑢 ∃ 𝑣 𝑧 = 〈 𝑢 , 𝑣 〉 ) ) |
| 58 |
|
19.42vv |
⊢ ( ∃ 𝑢 ∃ 𝑣 ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) ↔ ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ∧ ∃ 𝑢 ∃ 𝑣 𝑧 = 〈 𝑢 , 𝑣 〉 ) ) |
| 59 |
57 58
|
bitr4i |
⊢ ( ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ∧ dom { 𝑧 } ≠ ∅ ) ↔ ∃ 𝑢 ∃ 𝑣 ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) ) |
| 60 |
38
|
3ad2ant1 |
⊢ ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) → 𝑔 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) |
| 61 |
|
snssi |
⊢ ( 𝑢 ∈ dom 𝑦 → { 𝑢 } ⊆ dom 𝑦 ) |
| 62 |
|
ssequn2 |
⊢ ( { 𝑢 } ⊆ dom 𝑦 ↔ ( dom 𝑦 ∪ { 𝑢 } ) = dom 𝑦 ) |
| 63 |
61 62
|
sylib |
⊢ ( 𝑢 ∈ dom 𝑦 → ( dom 𝑦 ∪ { 𝑢 } ) = dom 𝑦 ) |
| 64 |
63
|
fneq2d |
⊢ ( 𝑢 ∈ dom 𝑦 → ( 𝑔 Fn ( dom 𝑦 ∪ { 𝑢 } ) ↔ 𝑔 Fn dom 𝑦 ) ) |
| 65 |
64
|
biimparc |
⊢ ( ( 𝑔 Fn dom 𝑦 ∧ 𝑢 ∈ dom 𝑦 ) → 𝑔 Fn ( dom 𝑦 ∪ { 𝑢 } ) ) |
| 66 |
65
|
3adant2 |
⊢ ( ( 𝑔 Fn dom 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ∧ 𝑢 ∈ dom 𝑦 ) → 𝑔 Fn ( dom 𝑦 ∪ { 𝑢 } ) ) |
| 67 |
|
sneq |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → { 𝑧 } = { 〈 𝑢 , 𝑣 〉 } ) |
| 68 |
67
|
dmeqd |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → dom { 𝑧 } = dom { 〈 𝑢 , 𝑣 〉 } ) |
| 69 |
|
vex |
⊢ 𝑣 ∈ V |
| 70 |
69
|
dmsnop |
⊢ dom { 〈 𝑢 , 𝑣 〉 } = { 𝑢 } |
| 71 |
68 70
|
eqtrdi |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → dom { 𝑧 } = { 𝑢 } ) |
| 72 |
71
|
uneq2d |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( dom 𝑦 ∪ dom { 𝑧 } ) = ( dom 𝑦 ∪ { 𝑢 } ) ) |
| 73 |
40 72
|
eqtrid |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → dom ( 𝑦 ∪ { 𝑧 } ) = ( dom 𝑦 ∪ { 𝑢 } ) ) |
| 74 |
73
|
fneq2d |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) ↔ 𝑔 Fn ( dom 𝑦 ∪ { 𝑢 } ) ) ) |
| 75 |
74
|
3ad2ant2 |
⊢ ( ( 𝑔 Fn dom 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ∧ 𝑢 ∈ dom 𝑦 ) → ( 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) ↔ 𝑔 Fn ( dom 𝑦 ∪ { 𝑢 } ) ) ) |
| 76 |
66 75
|
mpbird |
⊢ ( ( 𝑔 Fn dom 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ∧ 𝑢 ∈ dom 𝑦 ) → 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) |
| 77 |
76
|
3expia |
⊢ ( ( 𝑔 Fn dom 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) → ( 𝑢 ∈ dom 𝑦 → 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 78 |
77
|
3adant1 |
⊢ ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) → ( 𝑢 ∈ dom 𝑦 → 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 79 |
60 78 52
|
syl6an |
⊢ ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) → ( 𝑢 ∈ dom 𝑦 → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 80 |
67
|
uneq2d |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( 𝑔 ∪ { 𝑧 } ) = ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) ) |
| 81 |
80
|
adantl |
⊢ ( ( 𝑔 ⊆ 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) → ( 𝑔 ∪ { 𝑧 } ) = ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) ) |
| 82 |
|
unss1 |
⊢ ( 𝑔 ⊆ 𝑦 → ( 𝑔 ∪ { 𝑧 } ) ⊆ ( 𝑦 ∪ { 𝑧 } ) ) |
| 83 |
82
|
adantr |
⊢ ( ( 𝑔 ⊆ 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) → ( 𝑔 ∪ { 𝑧 } ) ⊆ ( 𝑦 ∪ { 𝑧 } ) ) |
| 84 |
81 83
|
eqsstrrd |
⊢ ( ( 𝑔 ⊆ 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) → ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) ⊆ ( 𝑦 ∪ { 𝑧 } ) ) |
| 85 |
84
|
3adant2 |
⊢ ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) → ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) ⊆ ( 𝑦 ∪ { 𝑧 } ) ) |
| 86 |
|
vex |
⊢ 𝑢 ∈ V |
| 87 |
86
|
a1i |
⊢ ( ( 𝑔 Fn dom 𝑦 ∧ ¬ 𝑢 ∈ dom 𝑦 ) → 𝑢 ∈ V ) |
| 88 |
69
|
a1i |
⊢ ( ( 𝑔 Fn dom 𝑦 ∧ ¬ 𝑢 ∈ dom 𝑦 ) → 𝑣 ∈ V ) |
| 89 |
|
simpl |
⊢ ( ( 𝑔 Fn dom 𝑦 ∧ ¬ 𝑢 ∈ dom 𝑦 ) → 𝑔 Fn dom 𝑦 ) |
| 90 |
|
eqid |
⊢ ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) = ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) |
| 91 |
|
eqid |
⊢ ( dom 𝑦 ∪ { 𝑢 } ) = ( dom 𝑦 ∪ { 𝑢 } ) |
| 92 |
|
simpr |
⊢ ( ( 𝑔 Fn dom 𝑦 ∧ ¬ 𝑢 ∈ dom 𝑦 ) → ¬ 𝑢 ∈ dom 𝑦 ) |
| 93 |
87 88 89 90 91 92
|
fnunop |
⊢ ( ( 𝑔 Fn dom 𝑦 ∧ ¬ 𝑢 ∈ dom 𝑦 ) → ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) Fn ( dom 𝑦 ∪ { 𝑢 } ) ) |
| 94 |
93
|
ex |
⊢ ( 𝑔 Fn dom 𝑦 → ( ¬ 𝑢 ∈ dom 𝑦 → ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) Fn ( dom 𝑦 ∪ { 𝑢 } ) ) ) |
| 95 |
94
|
3ad2ant2 |
⊢ ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) → ( ¬ 𝑢 ∈ dom 𝑦 → ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) Fn ( dom 𝑦 ∪ { 𝑢 } ) ) ) |
| 96 |
73
|
fneq2d |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) Fn dom ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) Fn ( dom 𝑦 ∪ { 𝑢 } ) ) ) |
| 97 |
96
|
3ad2ant3 |
⊢ ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) → ( ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) Fn dom ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) Fn ( dom 𝑦 ∪ { 𝑢 } ) ) ) |
| 98 |
95 97
|
sylibrd |
⊢ ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) → ( ¬ 𝑢 ∈ dom 𝑦 → ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 99 |
|
snex |
⊢ { 〈 𝑢 , 𝑣 〉 } ∈ V |
| 100 |
48 99
|
unex |
⊢ ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) ∈ V |
| 101 |
|
sseq1 |
⊢ ( 𝑓 = ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) → ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 102 |
|
fneq1 |
⊢ ( 𝑓 = ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) → ( 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 103 |
101 102
|
anbi12d |
⊢ ( 𝑓 = ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) → ( ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ↔ ( ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 104 |
100 103
|
spcev |
⊢ ( ( ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) Fn dom ( 𝑦 ∪ { 𝑧 } ) ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 105 |
85 98 104
|
syl6an |
⊢ ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) → ( ¬ 𝑢 ∈ dom 𝑦 → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 106 |
79 105
|
pm2.61d |
⊢ ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 107 |
106
|
3expa |
⊢ ( ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 108 |
107
|
exlimivv |
⊢ ( ∃ 𝑢 ∃ 𝑣 ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 109 |
59 108
|
sylbi |
⊢ ( ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ∧ dom { 𝑧 } ≠ ∅ ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 110 |
53 109
|
pm2.61dane |
⊢ ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 111 |
110
|
exlimiv |
⊢ ( ∃ 𝑔 ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 112 |
37 111
|
sylbi |
⊢ ( ∃ 𝑓 ( 𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦 ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 113 |
112
|
a1i |
⊢ ( 𝑦 ∈ Fin → ( ∃ 𝑓 ( 𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦 ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 114 |
8 13 18 23 33 113
|
findcard2 |
⊢ ( 𝑤 ∈ Fin → ∃ 𝑓 ( 𝑓 ⊆ 𝑤 ∧ 𝑓 Fn dom 𝑤 ) ) |
| 115 |
3 114
|
syl |
⊢ ( Fin = V → ∃ 𝑓 ( 𝑓 ⊆ 𝑤 ∧ 𝑓 Fn dom 𝑤 ) ) |
| 116 |
115
|
alrimiv |
⊢ ( Fin = V → ∀ 𝑤 ∃ 𝑓 ( 𝑓 ⊆ 𝑤 ∧ 𝑓 Fn dom 𝑤 ) ) |
| 117 |
|
df-ac |
⊢ ( CHOICE ↔ ∀ 𝑤 ∃ 𝑓 ( 𝑓 ⊆ 𝑤 ∧ 𝑓 Fn dom 𝑤 ) ) |
| 118 |
116 117
|
sylibr |
⊢ ( Fin = V → CHOICE ) |