Metamath Proof Explorer


Theorem fineqvac

Description: If the Axiom of Infinity is negated, then the Axiom of Choice becomes redundant. For a shorter proof using ax-rep and ax-pow , see fineqvacALT . (Contributed by BTernaryTau, 21-Sep-2024)

Ref Expression
Assertion fineqvac ( Fin = V → CHOICE )

Proof

Step Hyp Ref Expression
1 vex 𝑤 ∈ V
2 eleq2w2 ( Fin = V → ( 𝑤 ∈ Fin ↔ 𝑤 ∈ V ) )
3 1 2 mpbiri ( Fin = V → 𝑤 ∈ Fin )
4 sseq2 ( 𝑥 = ∅ → ( 𝑓𝑥𝑓 ⊆ ∅ ) )
5 dmeq ( 𝑥 = ∅ → dom 𝑥 = dom ∅ )
6 5 fneq2d ( 𝑥 = ∅ → ( 𝑓 Fn dom 𝑥𝑓 Fn dom ∅ ) )
7 4 6 anbi12d ( 𝑥 = ∅ → ( ( 𝑓𝑥𝑓 Fn dom 𝑥 ) ↔ ( 𝑓 ⊆ ∅ ∧ 𝑓 Fn dom ∅ ) ) )
8 7 exbidv ( 𝑥 = ∅ → ( ∃ 𝑓 ( 𝑓𝑥𝑓 Fn dom 𝑥 ) ↔ ∃ 𝑓 ( 𝑓 ⊆ ∅ ∧ 𝑓 Fn dom ∅ ) ) )
9 sseq2 ( 𝑥 = 𝑦 → ( 𝑓𝑥𝑓𝑦 ) )
10 dmeq ( 𝑥 = 𝑦 → dom 𝑥 = dom 𝑦 )
11 10 fneq2d ( 𝑥 = 𝑦 → ( 𝑓 Fn dom 𝑥𝑓 Fn dom 𝑦 ) )
12 9 11 anbi12d ( 𝑥 = 𝑦 → ( ( 𝑓𝑥𝑓 Fn dom 𝑥 ) ↔ ( 𝑓𝑦𝑓 Fn dom 𝑦 ) ) )
13 12 exbidv ( 𝑥 = 𝑦 → ( ∃ 𝑓 ( 𝑓𝑥𝑓 Fn dom 𝑥 ) ↔ ∃ 𝑓 ( 𝑓𝑦𝑓 Fn dom 𝑦 ) ) )
14 sseq2 ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑓𝑥𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) )
15 dmeq ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → dom 𝑥 = dom ( 𝑦 ∪ { 𝑧 } ) )
16 15 fneq2d ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑓 Fn dom 𝑥𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) )
17 14 16 anbi12d ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑓𝑥𝑓 Fn dom 𝑥 ) ↔ ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) )
18 17 exbidv ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∃ 𝑓 ( 𝑓𝑥𝑓 Fn dom 𝑥 ) ↔ ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) )
19 sseq2 ( 𝑥 = 𝑤 → ( 𝑓𝑥𝑓𝑤 ) )
20 dmeq ( 𝑥 = 𝑤 → dom 𝑥 = dom 𝑤 )
21 20 fneq2d ( 𝑥 = 𝑤 → ( 𝑓 Fn dom 𝑥𝑓 Fn dom 𝑤 ) )
22 19 21 anbi12d ( 𝑥 = 𝑤 → ( ( 𝑓𝑥𝑓 Fn dom 𝑥 ) ↔ ( 𝑓𝑤𝑓 Fn dom 𝑤 ) ) )
23 22 exbidv ( 𝑥 = 𝑤 → ( ∃ 𝑓 ( 𝑓𝑥𝑓 Fn dom 𝑥 ) ↔ ∃ 𝑓 ( 𝑓𝑤𝑓 Fn dom 𝑤 ) ) )
24 ssid ∅ ⊆ ∅
25 fun0 Fun ∅
26 funfn ( Fun ∅ ↔ ∅ Fn dom ∅ )
27 25 26 mpbi ∅ Fn dom ∅
28 0ex ∅ ∈ V
29 sseq1 ( 𝑓 = ∅ → ( 𝑓 ⊆ ∅ ↔ ∅ ⊆ ∅ ) )
30 fneq1 ( 𝑓 = ∅ → ( 𝑓 Fn dom ∅ ↔ ∅ Fn dom ∅ ) )
31 29 30 anbi12d ( 𝑓 = ∅ → ( ( 𝑓 ⊆ ∅ ∧ 𝑓 Fn dom ∅ ) ↔ ( ∅ ⊆ ∅ ∧ ∅ Fn dom ∅ ) ) )
32 28 31 spcev ( ( ∅ ⊆ ∅ ∧ ∅ Fn dom ∅ ) → ∃ 𝑓 ( 𝑓 ⊆ ∅ ∧ 𝑓 Fn dom ∅ ) )
33 24 27 32 mp2an 𝑓 ( 𝑓 ⊆ ∅ ∧ 𝑓 Fn dom ∅ )
34 sseq1 ( 𝑓 = 𝑔 → ( 𝑓𝑦𝑔𝑦 ) )
35 fneq1 ( 𝑓 = 𝑔 → ( 𝑓 Fn dom 𝑦𝑔 Fn dom 𝑦 ) )
36 34 35 anbi12d ( 𝑓 = 𝑔 → ( ( 𝑓𝑦𝑓 Fn dom 𝑦 ) ↔ ( 𝑔𝑦𝑔 Fn dom 𝑦 ) ) )
37 36 cbvexvw ( ∃ 𝑓 ( 𝑓𝑦𝑓 Fn dom 𝑦 ) ↔ ∃ 𝑔 ( 𝑔𝑦𝑔 Fn dom 𝑦 ) )
38 ssun3 ( 𝑔𝑦𝑔 ⊆ ( 𝑦 ∪ { 𝑧 } ) )
39 38 ad2antrr ( ( ( 𝑔𝑦𝑔 Fn dom 𝑦 ) ∧ dom { 𝑧 } = ∅ ) → 𝑔 ⊆ ( 𝑦 ∪ { 𝑧 } ) )
40 dmun dom ( 𝑦 ∪ { 𝑧 } ) = ( dom 𝑦 ∪ dom { 𝑧 } )
41 uneq2 ( dom { 𝑧 } = ∅ → ( dom 𝑦 ∪ dom { 𝑧 } ) = ( dom 𝑦 ∪ ∅ ) )
42 un0 ( dom 𝑦 ∪ ∅ ) = dom 𝑦
43 41 42 eqtrdi ( dom { 𝑧 } = ∅ → ( dom 𝑦 ∪ dom { 𝑧 } ) = dom 𝑦 )
44 40 43 syl5eq ( dom { 𝑧 } = ∅ → dom ( 𝑦 ∪ { 𝑧 } ) = dom 𝑦 )
45 44 fneq2d ( dom { 𝑧 } = ∅ → ( 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) ↔ 𝑔 Fn dom 𝑦 ) )
46 45 biimparc ( ( 𝑔 Fn dom 𝑦 ∧ dom { 𝑧 } = ∅ ) → 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) )
47 46 adantll ( ( ( 𝑔𝑦𝑔 Fn dom 𝑦 ) ∧ dom { 𝑧 } = ∅ ) → 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) )
48 vex 𝑔 ∈ V
49 sseq1 ( 𝑓 = 𝑔 → ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ↔ 𝑔 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) )
50 fneq1 ( 𝑓 = 𝑔 → ( 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ↔ 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) )
51 49 50 anbi12d ( 𝑓 = 𝑔 → ( ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ↔ ( 𝑔 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) )
52 48 51 spcev ( ( 𝑔 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) )
53 39 47 52 syl2anc ( ( ( 𝑔𝑦𝑔 Fn dom 𝑦 ) ∧ dom { 𝑧 } = ∅ ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) )
54 dmsnn0 ( 𝑧 ∈ ( V × V ) ↔ dom { 𝑧 } ≠ ∅ )
55 elvv ( 𝑧 ∈ ( V × V ) ↔ ∃ 𝑢𝑣 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ )
56 54 55 bitr3i ( dom { 𝑧 } ≠ ∅ ↔ ∃ 𝑢𝑣 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ )
57 56 anbi2i ( ( ( 𝑔𝑦𝑔 Fn dom 𝑦 ) ∧ dom { 𝑧 } ≠ ∅ ) ↔ ( ( 𝑔𝑦𝑔 Fn dom 𝑦 ) ∧ ∃ 𝑢𝑣 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) )
58 19.42vv ( ∃ 𝑢𝑣 ( ( 𝑔𝑦𝑔 Fn dom 𝑦 ) ∧ 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) ↔ ( ( 𝑔𝑦𝑔 Fn dom 𝑦 ) ∧ ∃ 𝑢𝑣 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) )
59 57 58 bitr4i ( ( ( 𝑔𝑦𝑔 Fn dom 𝑦 ) ∧ dom { 𝑧 } ≠ ∅ ) ↔ ∃ 𝑢𝑣 ( ( 𝑔𝑦𝑔 Fn dom 𝑦 ) ∧ 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) )
60 38 3ad2ant1 ( ( 𝑔𝑦𝑔 Fn dom 𝑦𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) → 𝑔 ⊆ ( 𝑦 ∪ { 𝑧 } ) )
61 snssi ( 𝑢 ∈ dom 𝑦 → { 𝑢 } ⊆ dom 𝑦 )
62 ssequn2 ( { 𝑢 } ⊆ dom 𝑦 ↔ ( dom 𝑦 ∪ { 𝑢 } ) = dom 𝑦 )
63 61 62 sylib ( 𝑢 ∈ dom 𝑦 → ( dom 𝑦 ∪ { 𝑢 } ) = dom 𝑦 )
64 63 fneq2d ( 𝑢 ∈ dom 𝑦 → ( 𝑔 Fn ( dom 𝑦 ∪ { 𝑢 } ) ↔ 𝑔 Fn dom 𝑦 ) )
65 64 biimparc ( ( 𝑔 Fn dom 𝑦𝑢 ∈ dom 𝑦 ) → 𝑔 Fn ( dom 𝑦 ∪ { 𝑢 } ) )
66 65 3adant2 ( ( 𝑔 Fn dom 𝑦𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ∧ 𝑢 ∈ dom 𝑦 ) → 𝑔 Fn ( dom 𝑦 ∪ { 𝑢 } ) )
67 sneq ( 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ → { 𝑧 } = { ⟨ 𝑢 , 𝑣 ⟩ } )
68 67 dmeqd ( 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ → dom { 𝑧 } = dom { ⟨ 𝑢 , 𝑣 ⟩ } )
69 vex 𝑣 ∈ V
70 69 dmsnop dom { ⟨ 𝑢 , 𝑣 ⟩ } = { 𝑢 }
71 68 70 eqtrdi ( 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ → dom { 𝑧 } = { 𝑢 } )
72 71 uneq2d ( 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ → ( dom 𝑦 ∪ dom { 𝑧 } ) = ( dom 𝑦 ∪ { 𝑢 } ) )
73 40 72 syl5eq ( 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ → dom ( 𝑦 ∪ { 𝑧 } ) = ( dom 𝑦 ∪ { 𝑢 } ) )
74 73 fneq2d ( 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ → ( 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) ↔ 𝑔 Fn ( dom 𝑦 ∪ { 𝑢 } ) ) )
75 74 3ad2ant2 ( ( 𝑔 Fn dom 𝑦𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ∧ 𝑢 ∈ dom 𝑦 ) → ( 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) ↔ 𝑔 Fn ( dom 𝑦 ∪ { 𝑢 } ) ) )
76 66 75 mpbird ( ( 𝑔 Fn dom 𝑦𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ∧ 𝑢 ∈ dom 𝑦 ) → 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) )
77 76 3expia ( ( 𝑔 Fn dom 𝑦𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) → ( 𝑢 ∈ dom 𝑦𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) )
78 77 3adant1 ( ( 𝑔𝑦𝑔 Fn dom 𝑦𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) → ( 𝑢 ∈ dom 𝑦𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) )
79 60 78 52 syl6an ( ( 𝑔𝑦𝑔 Fn dom 𝑦𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) → ( 𝑢 ∈ dom 𝑦 → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) )
80 67 uneq2d ( 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ → ( 𝑔 ∪ { 𝑧 } ) = ( 𝑔 ∪ { ⟨ 𝑢 , 𝑣 ⟩ } ) )
81 80 adantl ( ( 𝑔𝑦𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) → ( 𝑔 ∪ { 𝑧 } ) = ( 𝑔 ∪ { ⟨ 𝑢 , 𝑣 ⟩ } ) )
82 unss1 ( 𝑔𝑦 → ( 𝑔 ∪ { 𝑧 } ) ⊆ ( 𝑦 ∪ { 𝑧 } ) )
83 82 adantr ( ( 𝑔𝑦𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) → ( 𝑔 ∪ { 𝑧 } ) ⊆ ( 𝑦 ∪ { 𝑧 } ) )
84 81 83 eqsstrrd ( ( 𝑔𝑦𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) → ( 𝑔 ∪ { ⟨ 𝑢 , 𝑣 ⟩ } ) ⊆ ( 𝑦 ∪ { 𝑧 } ) )
85 84 3adant2 ( ( 𝑔𝑦𝑔 Fn dom 𝑦𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) → ( 𝑔 ∪ { ⟨ 𝑢 , 𝑣 ⟩ } ) ⊆ ( 𝑦 ∪ { 𝑧 } ) )
86 vex 𝑢 ∈ V
87 86 a1i ( ( 𝑔 Fn dom 𝑦 ∧ ¬ 𝑢 ∈ dom 𝑦 ) → 𝑢 ∈ V )
88 69 a1i ( ( 𝑔 Fn dom 𝑦 ∧ ¬ 𝑢 ∈ dom 𝑦 ) → 𝑣 ∈ V )
89 simpl ( ( 𝑔 Fn dom 𝑦 ∧ ¬ 𝑢 ∈ dom 𝑦 ) → 𝑔 Fn dom 𝑦 )
90 eqid ( 𝑔 ∪ { ⟨ 𝑢 , 𝑣 ⟩ } ) = ( 𝑔 ∪ { ⟨ 𝑢 , 𝑣 ⟩ } )
91 eqid ( dom 𝑦 ∪ { 𝑢 } ) = ( dom 𝑦 ∪ { 𝑢 } )
92 simpr ( ( 𝑔 Fn dom 𝑦 ∧ ¬ 𝑢 ∈ dom 𝑦 ) → ¬ 𝑢 ∈ dom 𝑦 )
93 87 88 89 90 91 92 fnunop ( ( 𝑔 Fn dom 𝑦 ∧ ¬ 𝑢 ∈ dom 𝑦 ) → ( 𝑔 ∪ { ⟨ 𝑢 , 𝑣 ⟩ } ) Fn ( dom 𝑦 ∪ { 𝑢 } ) )
94 93 ex ( 𝑔 Fn dom 𝑦 → ( ¬ 𝑢 ∈ dom 𝑦 → ( 𝑔 ∪ { ⟨ 𝑢 , 𝑣 ⟩ } ) Fn ( dom 𝑦 ∪ { 𝑢 } ) ) )
95 94 3ad2ant2 ( ( 𝑔𝑦𝑔 Fn dom 𝑦𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) → ( ¬ 𝑢 ∈ dom 𝑦 → ( 𝑔 ∪ { ⟨ 𝑢 , 𝑣 ⟩ } ) Fn ( dom 𝑦 ∪ { 𝑢 } ) ) )
96 73 fneq2d ( 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ → ( ( 𝑔 ∪ { ⟨ 𝑢 , 𝑣 ⟩ } ) Fn dom ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑔 ∪ { ⟨ 𝑢 , 𝑣 ⟩ } ) Fn ( dom 𝑦 ∪ { 𝑢 } ) ) )
97 96 3ad2ant3 ( ( 𝑔𝑦𝑔 Fn dom 𝑦𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) → ( ( 𝑔 ∪ { ⟨ 𝑢 , 𝑣 ⟩ } ) Fn dom ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑔 ∪ { ⟨ 𝑢 , 𝑣 ⟩ } ) Fn ( dom 𝑦 ∪ { 𝑢 } ) ) )
98 95 97 sylibrd ( ( 𝑔𝑦𝑔 Fn dom 𝑦𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) → ( ¬ 𝑢 ∈ dom 𝑦 → ( 𝑔 ∪ { ⟨ 𝑢 , 𝑣 ⟩ } ) Fn dom ( 𝑦 ∪ { 𝑧 } ) ) )
99 snex { ⟨ 𝑢 , 𝑣 ⟩ } ∈ V
100 48 99 unex ( 𝑔 ∪ { ⟨ 𝑢 , 𝑣 ⟩ } ) ∈ V
101 sseq1 ( 𝑓 = ( 𝑔 ∪ { ⟨ 𝑢 , 𝑣 ⟩ } ) → ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑔 ∪ { ⟨ 𝑢 , 𝑣 ⟩ } ) ⊆ ( 𝑦 ∪ { 𝑧 } ) ) )
102 fneq1 ( 𝑓 = ( 𝑔 ∪ { ⟨ 𝑢 , 𝑣 ⟩ } ) → ( 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑔 ∪ { ⟨ 𝑢 , 𝑣 ⟩ } ) Fn dom ( 𝑦 ∪ { 𝑧 } ) ) )
103 101 102 anbi12d ( 𝑓 = ( 𝑔 ∪ { ⟨ 𝑢 , 𝑣 ⟩ } ) → ( ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ↔ ( ( 𝑔 ∪ { ⟨ 𝑢 , 𝑣 ⟩ } ) ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ ( 𝑔 ∪ { ⟨ 𝑢 , 𝑣 ⟩ } ) Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) )
104 100 103 spcev ( ( ( 𝑔 ∪ { ⟨ 𝑢 , 𝑣 ⟩ } ) ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ ( 𝑔 ∪ { ⟨ 𝑢 , 𝑣 ⟩ } ) Fn dom ( 𝑦 ∪ { 𝑧 } ) ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) )
105 85 98 104 syl6an ( ( 𝑔𝑦𝑔 Fn dom 𝑦𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) → ( ¬ 𝑢 ∈ dom 𝑦 → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) )
106 79 105 pm2.61d ( ( 𝑔𝑦𝑔 Fn dom 𝑦𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) )
107 106 3expa ( ( ( 𝑔𝑦𝑔 Fn dom 𝑦 ) ∧ 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) )
108 107 exlimivv ( ∃ 𝑢𝑣 ( ( 𝑔𝑦𝑔 Fn dom 𝑦 ) ∧ 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) )
109 59 108 sylbi ( ( ( 𝑔𝑦𝑔 Fn dom 𝑦 ) ∧ dom { 𝑧 } ≠ ∅ ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) )
110 53 109 pm2.61dane ( ( 𝑔𝑦𝑔 Fn dom 𝑦 ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) )
111 110 exlimiv ( ∃ 𝑔 ( 𝑔𝑦𝑔 Fn dom 𝑦 ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) )
112 37 111 sylbi ( ∃ 𝑓 ( 𝑓𝑦𝑓 Fn dom 𝑦 ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) )
113 112 a1i ( 𝑦 ∈ Fin → ( ∃ 𝑓 ( 𝑓𝑦𝑓 Fn dom 𝑦 ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) )
114 8 13 18 23 33 113 findcard2 ( 𝑤 ∈ Fin → ∃ 𝑓 ( 𝑓𝑤𝑓 Fn dom 𝑤 ) )
115 3 114 syl ( Fin = V → ∃ 𝑓 ( 𝑓𝑤𝑓 Fn dom 𝑤 ) )
116 115 alrimiv ( Fin = V → ∀ 𝑤𝑓 ( 𝑓𝑤𝑓 Fn dom 𝑤 ) )
117 df-ac ( CHOICE ↔ ∀ 𝑤𝑓 ( 𝑓𝑤𝑓 Fn dom 𝑤 ) )
118 116 117 sylibr ( Fin = V → CHOICE )