Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
⊢ 𝑤 ∈ V |
2 |
|
eleq2w2 |
⊢ ( Fin = V → ( 𝑤 ∈ Fin ↔ 𝑤 ∈ V ) ) |
3 |
1 2
|
mpbiri |
⊢ ( Fin = V → 𝑤 ∈ Fin ) |
4 |
|
sseq2 |
⊢ ( 𝑥 = ∅ → ( 𝑓 ⊆ 𝑥 ↔ 𝑓 ⊆ ∅ ) ) |
5 |
|
dmeq |
⊢ ( 𝑥 = ∅ → dom 𝑥 = dom ∅ ) |
6 |
5
|
fneq2d |
⊢ ( 𝑥 = ∅ → ( 𝑓 Fn dom 𝑥 ↔ 𝑓 Fn dom ∅ ) ) |
7 |
4 6
|
anbi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥 ) ↔ ( 𝑓 ⊆ ∅ ∧ 𝑓 Fn dom ∅ ) ) ) |
8 |
7
|
exbidv |
⊢ ( 𝑥 = ∅ → ( ∃ 𝑓 ( 𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥 ) ↔ ∃ 𝑓 ( 𝑓 ⊆ ∅ ∧ 𝑓 Fn dom ∅ ) ) ) |
9 |
|
sseq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑓 ⊆ 𝑥 ↔ 𝑓 ⊆ 𝑦 ) ) |
10 |
|
dmeq |
⊢ ( 𝑥 = 𝑦 → dom 𝑥 = dom 𝑦 ) |
11 |
10
|
fneq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑓 Fn dom 𝑥 ↔ 𝑓 Fn dom 𝑦 ) ) |
12 |
9 11
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥 ) ↔ ( 𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦 ) ) ) |
13 |
12
|
exbidv |
⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑓 ( 𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥 ) ↔ ∃ 𝑓 ( 𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦 ) ) ) |
14 |
|
sseq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑓 ⊆ 𝑥 ↔ 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ) |
15 |
|
dmeq |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → dom 𝑥 = dom ( 𝑦 ∪ { 𝑧 } ) ) |
16 |
15
|
fneq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑓 Fn dom 𝑥 ↔ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
17 |
14 16
|
anbi12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥 ) ↔ ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
18 |
17
|
exbidv |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∃ 𝑓 ( 𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥 ) ↔ ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
19 |
|
sseq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝑓 ⊆ 𝑥 ↔ 𝑓 ⊆ 𝑤 ) ) |
20 |
|
dmeq |
⊢ ( 𝑥 = 𝑤 → dom 𝑥 = dom 𝑤 ) |
21 |
20
|
fneq2d |
⊢ ( 𝑥 = 𝑤 → ( 𝑓 Fn dom 𝑥 ↔ 𝑓 Fn dom 𝑤 ) ) |
22 |
19 21
|
anbi12d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥 ) ↔ ( 𝑓 ⊆ 𝑤 ∧ 𝑓 Fn dom 𝑤 ) ) ) |
23 |
22
|
exbidv |
⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑓 ( 𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥 ) ↔ ∃ 𝑓 ( 𝑓 ⊆ 𝑤 ∧ 𝑓 Fn dom 𝑤 ) ) ) |
24 |
|
ssid |
⊢ ∅ ⊆ ∅ |
25 |
|
fun0 |
⊢ Fun ∅ |
26 |
|
funfn |
⊢ ( Fun ∅ ↔ ∅ Fn dom ∅ ) |
27 |
25 26
|
mpbi |
⊢ ∅ Fn dom ∅ |
28 |
|
0ex |
⊢ ∅ ∈ V |
29 |
|
sseq1 |
⊢ ( 𝑓 = ∅ → ( 𝑓 ⊆ ∅ ↔ ∅ ⊆ ∅ ) ) |
30 |
|
fneq1 |
⊢ ( 𝑓 = ∅ → ( 𝑓 Fn dom ∅ ↔ ∅ Fn dom ∅ ) ) |
31 |
29 30
|
anbi12d |
⊢ ( 𝑓 = ∅ → ( ( 𝑓 ⊆ ∅ ∧ 𝑓 Fn dom ∅ ) ↔ ( ∅ ⊆ ∅ ∧ ∅ Fn dom ∅ ) ) ) |
32 |
28 31
|
spcev |
⊢ ( ( ∅ ⊆ ∅ ∧ ∅ Fn dom ∅ ) → ∃ 𝑓 ( 𝑓 ⊆ ∅ ∧ 𝑓 Fn dom ∅ ) ) |
33 |
24 27 32
|
mp2an |
⊢ ∃ 𝑓 ( 𝑓 ⊆ ∅ ∧ 𝑓 Fn dom ∅ ) |
34 |
|
sseq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ⊆ 𝑦 ↔ 𝑔 ⊆ 𝑦 ) ) |
35 |
|
fneq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 Fn dom 𝑦 ↔ 𝑔 Fn dom 𝑦 ) ) |
36 |
34 35
|
anbi12d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦 ) ↔ ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ) ) |
37 |
36
|
cbvexvw |
⊢ ( ∃ 𝑓 ( 𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦 ) ↔ ∃ 𝑔 ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ) |
38 |
|
ssun3 |
⊢ ( 𝑔 ⊆ 𝑦 → 𝑔 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) |
39 |
38
|
ad2antrr |
⊢ ( ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ∧ dom { 𝑧 } = ∅ ) → 𝑔 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) |
40 |
|
dmun |
⊢ dom ( 𝑦 ∪ { 𝑧 } ) = ( dom 𝑦 ∪ dom { 𝑧 } ) |
41 |
|
uneq2 |
⊢ ( dom { 𝑧 } = ∅ → ( dom 𝑦 ∪ dom { 𝑧 } ) = ( dom 𝑦 ∪ ∅ ) ) |
42 |
|
un0 |
⊢ ( dom 𝑦 ∪ ∅ ) = dom 𝑦 |
43 |
41 42
|
eqtrdi |
⊢ ( dom { 𝑧 } = ∅ → ( dom 𝑦 ∪ dom { 𝑧 } ) = dom 𝑦 ) |
44 |
40 43
|
syl5eq |
⊢ ( dom { 𝑧 } = ∅ → dom ( 𝑦 ∪ { 𝑧 } ) = dom 𝑦 ) |
45 |
44
|
fneq2d |
⊢ ( dom { 𝑧 } = ∅ → ( 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) ↔ 𝑔 Fn dom 𝑦 ) ) |
46 |
45
|
biimparc |
⊢ ( ( 𝑔 Fn dom 𝑦 ∧ dom { 𝑧 } = ∅ ) → 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) |
47 |
46
|
adantll |
⊢ ( ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ∧ dom { 𝑧 } = ∅ ) → 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) |
48 |
|
vex |
⊢ 𝑔 ∈ V |
49 |
|
sseq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ↔ 𝑔 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ) |
50 |
|
fneq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ↔ 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
51 |
49 50
|
anbi12d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ↔ ( 𝑔 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
52 |
48 51
|
spcev |
⊢ ( ( 𝑔 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
53 |
39 47 52
|
syl2anc |
⊢ ( ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ∧ dom { 𝑧 } = ∅ ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
54 |
|
dmsnn0 |
⊢ ( 𝑧 ∈ ( V × V ) ↔ dom { 𝑧 } ≠ ∅ ) |
55 |
|
elvv |
⊢ ( 𝑧 ∈ ( V × V ) ↔ ∃ 𝑢 ∃ 𝑣 𝑧 = 〈 𝑢 , 𝑣 〉 ) |
56 |
54 55
|
bitr3i |
⊢ ( dom { 𝑧 } ≠ ∅ ↔ ∃ 𝑢 ∃ 𝑣 𝑧 = 〈 𝑢 , 𝑣 〉 ) |
57 |
56
|
anbi2i |
⊢ ( ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ∧ dom { 𝑧 } ≠ ∅ ) ↔ ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ∧ ∃ 𝑢 ∃ 𝑣 𝑧 = 〈 𝑢 , 𝑣 〉 ) ) |
58 |
|
19.42vv |
⊢ ( ∃ 𝑢 ∃ 𝑣 ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) ↔ ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ∧ ∃ 𝑢 ∃ 𝑣 𝑧 = 〈 𝑢 , 𝑣 〉 ) ) |
59 |
57 58
|
bitr4i |
⊢ ( ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ∧ dom { 𝑧 } ≠ ∅ ) ↔ ∃ 𝑢 ∃ 𝑣 ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) ) |
60 |
38
|
3ad2ant1 |
⊢ ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) → 𝑔 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) |
61 |
|
snssi |
⊢ ( 𝑢 ∈ dom 𝑦 → { 𝑢 } ⊆ dom 𝑦 ) |
62 |
|
ssequn2 |
⊢ ( { 𝑢 } ⊆ dom 𝑦 ↔ ( dom 𝑦 ∪ { 𝑢 } ) = dom 𝑦 ) |
63 |
61 62
|
sylib |
⊢ ( 𝑢 ∈ dom 𝑦 → ( dom 𝑦 ∪ { 𝑢 } ) = dom 𝑦 ) |
64 |
63
|
fneq2d |
⊢ ( 𝑢 ∈ dom 𝑦 → ( 𝑔 Fn ( dom 𝑦 ∪ { 𝑢 } ) ↔ 𝑔 Fn dom 𝑦 ) ) |
65 |
64
|
biimparc |
⊢ ( ( 𝑔 Fn dom 𝑦 ∧ 𝑢 ∈ dom 𝑦 ) → 𝑔 Fn ( dom 𝑦 ∪ { 𝑢 } ) ) |
66 |
65
|
3adant2 |
⊢ ( ( 𝑔 Fn dom 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ∧ 𝑢 ∈ dom 𝑦 ) → 𝑔 Fn ( dom 𝑦 ∪ { 𝑢 } ) ) |
67 |
|
sneq |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → { 𝑧 } = { 〈 𝑢 , 𝑣 〉 } ) |
68 |
67
|
dmeqd |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → dom { 𝑧 } = dom { 〈 𝑢 , 𝑣 〉 } ) |
69 |
|
vex |
⊢ 𝑣 ∈ V |
70 |
69
|
dmsnop |
⊢ dom { 〈 𝑢 , 𝑣 〉 } = { 𝑢 } |
71 |
68 70
|
eqtrdi |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → dom { 𝑧 } = { 𝑢 } ) |
72 |
71
|
uneq2d |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( dom 𝑦 ∪ dom { 𝑧 } ) = ( dom 𝑦 ∪ { 𝑢 } ) ) |
73 |
40 72
|
syl5eq |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → dom ( 𝑦 ∪ { 𝑧 } ) = ( dom 𝑦 ∪ { 𝑢 } ) ) |
74 |
73
|
fneq2d |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) ↔ 𝑔 Fn ( dom 𝑦 ∪ { 𝑢 } ) ) ) |
75 |
74
|
3ad2ant2 |
⊢ ( ( 𝑔 Fn dom 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ∧ 𝑢 ∈ dom 𝑦 ) → ( 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) ↔ 𝑔 Fn ( dom 𝑦 ∪ { 𝑢 } ) ) ) |
76 |
66 75
|
mpbird |
⊢ ( ( 𝑔 Fn dom 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ∧ 𝑢 ∈ dom 𝑦 ) → 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) |
77 |
76
|
3expia |
⊢ ( ( 𝑔 Fn dom 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) → ( 𝑢 ∈ dom 𝑦 → 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
78 |
77
|
3adant1 |
⊢ ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) → ( 𝑢 ∈ dom 𝑦 → 𝑔 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
79 |
60 78 52
|
syl6an |
⊢ ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) → ( 𝑢 ∈ dom 𝑦 → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
80 |
67
|
uneq2d |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( 𝑔 ∪ { 𝑧 } ) = ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) ) |
81 |
80
|
adantl |
⊢ ( ( 𝑔 ⊆ 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) → ( 𝑔 ∪ { 𝑧 } ) = ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) ) |
82 |
|
unss1 |
⊢ ( 𝑔 ⊆ 𝑦 → ( 𝑔 ∪ { 𝑧 } ) ⊆ ( 𝑦 ∪ { 𝑧 } ) ) |
83 |
82
|
adantr |
⊢ ( ( 𝑔 ⊆ 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) → ( 𝑔 ∪ { 𝑧 } ) ⊆ ( 𝑦 ∪ { 𝑧 } ) ) |
84 |
81 83
|
eqsstrrd |
⊢ ( ( 𝑔 ⊆ 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) → ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) ⊆ ( 𝑦 ∪ { 𝑧 } ) ) |
85 |
84
|
3adant2 |
⊢ ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) → ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) ⊆ ( 𝑦 ∪ { 𝑧 } ) ) |
86 |
|
vex |
⊢ 𝑢 ∈ V |
87 |
86
|
a1i |
⊢ ( ( 𝑔 Fn dom 𝑦 ∧ ¬ 𝑢 ∈ dom 𝑦 ) → 𝑢 ∈ V ) |
88 |
69
|
a1i |
⊢ ( ( 𝑔 Fn dom 𝑦 ∧ ¬ 𝑢 ∈ dom 𝑦 ) → 𝑣 ∈ V ) |
89 |
|
simpl |
⊢ ( ( 𝑔 Fn dom 𝑦 ∧ ¬ 𝑢 ∈ dom 𝑦 ) → 𝑔 Fn dom 𝑦 ) |
90 |
|
eqid |
⊢ ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) = ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) |
91 |
|
eqid |
⊢ ( dom 𝑦 ∪ { 𝑢 } ) = ( dom 𝑦 ∪ { 𝑢 } ) |
92 |
|
simpr |
⊢ ( ( 𝑔 Fn dom 𝑦 ∧ ¬ 𝑢 ∈ dom 𝑦 ) → ¬ 𝑢 ∈ dom 𝑦 ) |
93 |
87 88 89 90 91 92
|
fnunop |
⊢ ( ( 𝑔 Fn dom 𝑦 ∧ ¬ 𝑢 ∈ dom 𝑦 ) → ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) Fn ( dom 𝑦 ∪ { 𝑢 } ) ) |
94 |
93
|
ex |
⊢ ( 𝑔 Fn dom 𝑦 → ( ¬ 𝑢 ∈ dom 𝑦 → ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) Fn ( dom 𝑦 ∪ { 𝑢 } ) ) ) |
95 |
94
|
3ad2ant2 |
⊢ ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) → ( ¬ 𝑢 ∈ dom 𝑦 → ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) Fn ( dom 𝑦 ∪ { 𝑢 } ) ) ) |
96 |
73
|
fneq2d |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) Fn dom ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) Fn ( dom 𝑦 ∪ { 𝑢 } ) ) ) |
97 |
96
|
3ad2ant3 |
⊢ ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) → ( ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) Fn dom ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) Fn ( dom 𝑦 ∪ { 𝑢 } ) ) ) |
98 |
95 97
|
sylibrd |
⊢ ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) → ( ¬ 𝑢 ∈ dom 𝑦 → ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
99 |
|
snex |
⊢ { 〈 𝑢 , 𝑣 〉 } ∈ V |
100 |
48 99
|
unex |
⊢ ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) ∈ V |
101 |
|
sseq1 |
⊢ ( 𝑓 = ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) → ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ) |
102 |
|
fneq1 |
⊢ ( 𝑓 = ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) → ( 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
103 |
101 102
|
anbi12d |
⊢ ( 𝑓 = ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) → ( ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ↔ ( ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
104 |
100 103
|
spcev |
⊢ ( ( ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ ( 𝑔 ∪ { 〈 𝑢 , 𝑣 〉 } ) Fn dom ( 𝑦 ∪ { 𝑧 } ) ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
105 |
85 98 104
|
syl6an |
⊢ ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) → ( ¬ 𝑢 ∈ dom 𝑦 → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
106 |
79 105
|
pm2.61d |
⊢ ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
107 |
106
|
3expa |
⊢ ( ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
108 |
107
|
exlimivv |
⊢ ( ∃ 𝑢 ∃ 𝑣 ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ∧ 𝑧 = 〈 𝑢 , 𝑣 〉 ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
109 |
59 108
|
sylbi |
⊢ ( ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ∧ dom { 𝑧 } ≠ ∅ ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
110 |
53 109
|
pm2.61dane |
⊢ ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
111 |
110
|
exlimiv |
⊢ ( ∃ 𝑔 ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
112 |
37 111
|
sylbi |
⊢ ( ∃ 𝑓 ( 𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦 ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) |
113 |
112
|
a1i |
⊢ ( 𝑦 ∈ Fin → ( ∃ 𝑓 ( 𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦 ) → ∃ 𝑓 ( 𝑓 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑓 Fn dom ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
114 |
8 13 18 23 33 113
|
findcard2 |
⊢ ( 𝑤 ∈ Fin → ∃ 𝑓 ( 𝑓 ⊆ 𝑤 ∧ 𝑓 Fn dom 𝑤 ) ) |
115 |
3 114
|
syl |
⊢ ( Fin = V → ∃ 𝑓 ( 𝑓 ⊆ 𝑤 ∧ 𝑓 Fn dom 𝑤 ) ) |
116 |
115
|
alrimiv |
⊢ ( Fin = V → ∀ 𝑤 ∃ 𝑓 ( 𝑓 ⊆ 𝑤 ∧ 𝑓 Fn dom 𝑤 ) ) |
117 |
|
df-ac |
⊢ ( CHOICE ↔ ∀ 𝑤 ∃ 𝑓 ( 𝑓 ⊆ 𝑤 ∧ 𝑓 Fn dom 𝑤 ) ) |
118 |
116 117
|
sylibr |
⊢ ( Fin = V → CHOICE ) |