| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
|- w e. _V |
| 2 |
|
eleq2w2 |
|- ( Fin = _V -> ( w e. Fin <-> w e. _V ) ) |
| 3 |
1 2
|
mpbiri |
|- ( Fin = _V -> w e. Fin ) |
| 4 |
|
sseq2 |
|- ( x = (/) -> ( f C_ x <-> f C_ (/) ) ) |
| 5 |
|
dmeq |
|- ( x = (/) -> dom x = dom (/) ) |
| 6 |
5
|
fneq2d |
|- ( x = (/) -> ( f Fn dom x <-> f Fn dom (/) ) ) |
| 7 |
4 6
|
anbi12d |
|- ( x = (/) -> ( ( f C_ x /\ f Fn dom x ) <-> ( f C_ (/) /\ f Fn dom (/) ) ) ) |
| 8 |
7
|
exbidv |
|- ( x = (/) -> ( E. f ( f C_ x /\ f Fn dom x ) <-> E. f ( f C_ (/) /\ f Fn dom (/) ) ) ) |
| 9 |
|
sseq2 |
|- ( x = y -> ( f C_ x <-> f C_ y ) ) |
| 10 |
|
dmeq |
|- ( x = y -> dom x = dom y ) |
| 11 |
10
|
fneq2d |
|- ( x = y -> ( f Fn dom x <-> f Fn dom y ) ) |
| 12 |
9 11
|
anbi12d |
|- ( x = y -> ( ( f C_ x /\ f Fn dom x ) <-> ( f C_ y /\ f Fn dom y ) ) ) |
| 13 |
12
|
exbidv |
|- ( x = y -> ( E. f ( f C_ x /\ f Fn dom x ) <-> E. f ( f C_ y /\ f Fn dom y ) ) ) |
| 14 |
|
sseq2 |
|- ( x = ( y u. { z } ) -> ( f C_ x <-> f C_ ( y u. { z } ) ) ) |
| 15 |
|
dmeq |
|- ( x = ( y u. { z } ) -> dom x = dom ( y u. { z } ) ) |
| 16 |
15
|
fneq2d |
|- ( x = ( y u. { z } ) -> ( f Fn dom x <-> f Fn dom ( y u. { z } ) ) ) |
| 17 |
14 16
|
anbi12d |
|- ( x = ( y u. { z } ) -> ( ( f C_ x /\ f Fn dom x ) <-> ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) ) ) |
| 18 |
17
|
exbidv |
|- ( x = ( y u. { z } ) -> ( E. f ( f C_ x /\ f Fn dom x ) <-> E. f ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) ) ) |
| 19 |
|
sseq2 |
|- ( x = w -> ( f C_ x <-> f C_ w ) ) |
| 20 |
|
dmeq |
|- ( x = w -> dom x = dom w ) |
| 21 |
20
|
fneq2d |
|- ( x = w -> ( f Fn dom x <-> f Fn dom w ) ) |
| 22 |
19 21
|
anbi12d |
|- ( x = w -> ( ( f C_ x /\ f Fn dom x ) <-> ( f C_ w /\ f Fn dom w ) ) ) |
| 23 |
22
|
exbidv |
|- ( x = w -> ( E. f ( f C_ x /\ f Fn dom x ) <-> E. f ( f C_ w /\ f Fn dom w ) ) ) |
| 24 |
|
ssid |
|- (/) C_ (/) |
| 25 |
|
fun0 |
|- Fun (/) |
| 26 |
|
funfn |
|- ( Fun (/) <-> (/) Fn dom (/) ) |
| 27 |
25 26
|
mpbi |
|- (/) Fn dom (/) |
| 28 |
|
0ex |
|- (/) e. _V |
| 29 |
|
sseq1 |
|- ( f = (/) -> ( f C_ (/) <-> (/) C_ (/) ) ) |
| 30 |
|
fneq1 |
|- ( f = (/) -> ( f Fn dom (/) <-> (/) Fn dom (/) ) ) |
| 31 |
29 30
|
anbi12d |
|- ( f = (/) -> ( ( f C_ (/) /\ f Fn dom (/) ) <-> ( (/) C_ (/) /\ (/) Fn dom (/) ) ) ) |
| 32 |
28 31
|
spcev |
|- ( ( (/) C_ (/) /\ (/) Fn dom (/) ) -> E. f ( f C_ (/) /\ f Fn dom (/) ) ) |
| 33 |
24 27 32
|
mp2an |
|- E. f ( f C_ (/) /\ f Fn dom (/) ) |
| 34 |
|
sseq1 |
|- ( f = g -> ( f C_ y <-> g C_ y ) ) |
| 35 |
|
fneq1 |
|- ( f = g -> ( f Fn dom y <-> g Fn dom y ) ) |
| 36 |
34 35
|
anbi12d |
|- ( f = g -> ( ( f C_ y /\ f Fn dom y ) <-> ( g C_ y /\ g Fn dom y ) ) ) |
| 37 |
36
|
cbvexvw |
|- ( E. f ( f C_ y /\ f Fn dom y ) <-> E. g ( g C_ y /\ g Fn dom y ) ) |
| 38 |
|
ssun3 |
|- ( g C_ y -> g C_ ( y u. { z } ) ) |
| 39 |
38
|
ad2antrr |
|- ( ( ( g C_ y /\ g Fn dom y ) /\ dom { z } = (/) ) -> g C_ ( y u. { z } ) ) |
| 40 |
|
dmun |
|- dom ( y u. { z } ) = ( dom y u. dom { z } ) |
| 41 |
|
uneq2 |
|- ( dom { z } = (/) -> ( dom y u. dom { z } ) = ( dom y u. (/) ) ) |
| 42 |
|
un0 |
|- ( dom y u. (/) ) = dom y |
| 43 |
41 42
|
eqtrdi |
|- ( dom { z } = (/) -> ( dom y u. dom { z } ) = dom y ) |
| 44 |
40 43
|
eqtrid |
|- ( dom { z } = (/) -> dom ( y u. { z } ) = dom y ) |
| 45 |
44
|
fneq2d |
|- ( dom { z } = (/) -> ( g Fn dom ( y u. { z } ) <-> g Fn dom y ) ) |
| 46 |
45
|
biimparc |
|- ( ( g Fn dom y /\ dom { z } = (/) ) -> g Fn dom ( y u. { z } ) ) |
| 47 |
46
|
adantll |
|- ( ( ( g C_ y /\ g Fn dom y ) /\ dom { z } = (/) ) -> g Fn dom ( y u. { z } ) ) |
| 48 |
|
vex |
|- g e. _V |
| 49 |
|
sseq1 |
|- ( f = g -> ( f C_ ( y u. { z } ) <-> g C_ ( y u. { z } ) ) ) |
| 50 |
|
fneq1 |
|- ( f = g -> ( f Fn dom ( y u. { z } ) <-> g Fn dom ( y u. { z } ) ) ) |
| 51 |
49 50
|
anbi12d |
|- ( f = g -> ( ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) <-> ( g C_ ( y u. { z } ) /\ g Fn dom ( y u. { z } ) ) ) ) |
| 52 |
48 51
|
spcev |
|- ( ( g C_ ( y u. { z } ) /\ g Fn dom ( y u. { z } ) ) -> E. f ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) ) |
| 53 |
39 47 52
|
syl2anc |
|- ( ( ( g C_ y /\ g Fn dom y ) /\ dom { z } = (/) ) -> E. f ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) ) |
| 54 |
|
dmsnn0 |
|- ( z e. ( _V X. _V ) <-> dom { z } =/= (/) ) |
| 55 |
|
elvv |
|- ( z e. ( _V X. _V ) <-> E. u E. v z = <. u , v >. ) |
| 56 |
54 55
|
bitr3i |
|- ( dom { z } =/= (/) <-> E. u E. v z = <. u , v >. ) |
| 57 |
56
|
anbi2i |
|- ( ( ( g C_ y /\ g Fn dom y ) /\ dom { z } =/= (/) ) <-> ( ( g C_ y /\ g Fn dom y ) /\ E. u E. v z = <. u , v >. ) ) |
| 58 |
|
19.42vv |
|- ( E. u E. v ( ( g C_ y /\ g Fn dom y ) /\ z = <. u , v >. ) <-> ( ( g C_ y /\ g Fn dom y ) /\ E. u E. v z = <. u , v >. ) ) |
| 59 |
57 58
|
bitr4i |
|- ( ( ( g C_ y /\ g Fn dom y ) /\ dom { z } =/= (/) ) <-> E. u E. v ( ( g C_ y /\ g Fn dom y ) /\ z = <. u , v >. ) ) |
| 60 |
38
|
3ad2ant1 |
|- ( ( g C_ y /\ g Fn dom y /\ z = <. u , v >. ) -> g C_ ( y u. { z } ) ) |
| 61 |
|
snssi |
|- ( u e. dom y -> { u } C_ dom y ) |
| 62 |
|
ssequn2 |
|- ( { u } C_ dom y <-> ( dom y u. { u } ) = dom y ) |
| 63 |
61 62
|
sylib |
|- ( u e. dom y -> ( dom y u. { u } ) = dom y ) |
| 64 |
63
|
fneq2d |
|- ( u e. dom y -> ( g Fn ( dom y u. { u } ) <-> g Fn dom y ) ) |
| 65 |
64
|
biimparc |
|- ( ( g Fn dom y /\ u e. dom y ) -> g Fn ( dom y u. { u } ) ) |
| 66 |
65
|
3adant2 |
|- ( ( g Fn dom y /\ z = <. u , v >. /\ u e. dom y ) -> g Fn ( dom y u. { u } ) ) |
| 67 |
|
sneq |
|- ( z = <. u , v >. -> { z } = { <. u , v >. } ) |
| 68 |
67
|
dmeqd |
|- ( z = <. u , v >. -> dom { z } = dom { <. u , v >. } ) |
| 69 |
|
vex |
|- v e. _V |
| 70 |
69
|
dmsnop |
|- dom { <. u , v >. } = { u } |
| 71 |
68 70
|
eqtrdi |
|- ( z = <. u , v >. -> dom { z } = { u } ) |
| 72 |
71
|
uneq2d |
|- ( z = <. u , v >. -> ( dom y u. dom { z } ) = ( dom y u. { u } ) ) |
| 73 |
40 72
|
eqtrid |
|- ( z = <. u , v >. -> dom ( y u. { z } ) = ( dom y u. { u } ) ) |
| 74 |
73
|
fneq2d |
|- ( z = <. u , v >. -> ( g Fn dom ( y u. { z } ) <-> g Fn ( dom y u. { u } ) ) ) |
| 75 |
74
|
3ad2ant2 |
|- ( ( g Fn dom y /\ z = <. u , v >. /\ u e. dom y ) -> ( g Fn dom ( y u. { z } ) <-> g Fn ( dom y u. { u } ) ) ) |
| 76 |
66 75
|
mpbird |
|- ( ( g Fn dom y /\ z = <. u , v >. /\ u e. dom y ) -> g Fn dom ( y u. { z } ) ) |
| 77 |
76
|
3expia |
|- ( ( g Fn dom y /\ z = <. u , v >. ) -> ( u e. dom y -> g Fn dom ( y u. { z } ) ) ) |
| 78 |
77
|
3adant1 |
|- ( ( g C_ y /\ g Fn dom y /\ z = <. u , v >. ) -> ( u e. dom y -> g Fn dom ( y u. { z } ) ) ) |
| 79 |
60 78 52
|
syl6an |
|- ( ( g C_ y /\ g Fn dom y /\ z = <. u , v >. ) -> ( u e. dom y -> E. f ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) ) ) |
| 80 |
67
|
uneq2d |
|- ( z = <. u , v >. -> ( g u. { z } ) = ( g u. { <. u , v >. } ) ) |
| 81 |
80
|
adantl |
|- ( ( g C_ y /\ z = <. u , v >. ) -> ( g u. { z } ) = ( g u. { <. u , v >. } ) ) |
| 82 |
|
unss1 |
|- ( g C_ y -> ( g u. { z } ) C_ ( y u. { z } ) ) |
| 83 |
82
|
adantr |
|- ( ( g C_ y /\ z = <. u , v >. ) -> ( g u. { z } ) C_ ( y u. { z } ) ) |
| 84 |
81 83
|
eqsstrrd |
|- ( ( g C_ y /\ z = <. u , v >. ) -> ( g u. { <. u , v >. } ) C_ ( y u. { z } ) ) |
| 85 |
84
|
3adant2 |
|- ( ( g C_ y /\ g Fn dom y /\ z = <. u , v >. ) -> ( g u. { <. u , v >. } ) C_ ( y u. { z } ) ) |
| 86 |
|
vex |
|- u e. _V |
| 87 |
86
|
a1i |
|- ( ( g Fn dom y /\ -. u e. dom y ) -> u e. _V ) |
| 88 |
69
|
a1i |
|- ( ( g Fn dom y /\ -. u e. dom y ) -> v e. _V ) |
| 89 |
|
simpl |
|- ( ( g Fn dom y /\ -. u e. dom y ) -> g Fn dom y ) |
| 90 |
|
eqid |
|- ( g u. { <. u , v >. } ) = ( g u. { <. u , v >. } ) |
| 91 |
|
eqid |
|- ( dom y u. { u } ) = ( dom y u. { u } ) |
| 92 |
|
simpr |
|- ( ( g Fn dom y /\ -. u e. dom y ) -> -. u e. dom y ) |
| 93 |
87 88 89 90 91 92
|
fnunop |
|- ( ( g Fn dom y /\ -. u e. dom y ) -> ( g u. { <. u , v >. } ) Fn ( dom y u. { u } ) ) |
| 94 |
93
|
ex |
|- ( g Fn dom y -> ( -. u e. dom y -> ( g u. { <. u , v >. } ) Fn ( dom y u. { u } ) ) ) |
| 95 |
94
|
3ad2ant2 |
|- ( ( g C_ y /\ g Fn dom y /\ z = <. u , v >. ) -> ( -. u e. dom y -> ( g u. { <. u , v >. } ) Fn ( dom y u. { u } ) ) ) |
| 96 |
73
|
fneq2d |
|- ( z = <. u , v >. -> ( ( g u. { <. u , v >. } ) Fn dom ( y u. { z } ) <-> ( g u. { <. u , v >. } ) Fn ( dom y u. { u } ) ) ) |
| 97 |
96
|
3ad2ant3 |
|- ( ( g C_ y /\ g Fn dom y /\ z = <. u , v >. ) -> ( ( g u. { <. u , v >. } ) Fn dom ( y u. { z } ) <-> ( g u. { <. u , v >. } ) Fn ( dom y u. { u } ) ) ) |
| 98 |
95 97
|
sylibrd |
|- ( ( g C_ y /\ g Fn dom y /\ z = <. u , v >. ) -> ( -. u e. dom y -> ( g u. { <. u , v >. } ) Fn dom ( y u. { z } ) ) ) |
| 99 |
|
snex |
|- { <. u , v >. } e. _V |
| 100 |
48 99
|
unex |
|- ( g u. { <. u , v >. } ) e. _V |
| 101 |
|
sseq1 |
|- ( f = ( g u. { <. u , v >. } ) -> ( f C_ ( y u. { z } ) <-> ( g u. { <. u , v >. } ) C_ ( y u. { z } ) ) ) |
| 102 |
|
fneq1 |
|- ( f = ( g u. { <. u , v >. } ) -> ( f Fn dom ( y u. { z } ) <-> ( g u. { <. u , v >. } ) Fn dom ( y u. { z } ) ) ) |
| 103 |
101 102
|
anbi12d |
|- ( f = ( g u. { <. u , v >. } ) -> ( ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) <-> ( ( g u. { <. u , v >. } ) C_ ( y u. { z } ) /\ ( g u. { <. u , v >. } ) Fn dom ( y u. { z } ) ) ) ) |
| 104 |
100 103
|
spcev |
|- ( ( ( g u. { <. u , v >. } ) C_ ( y u. { z } ) /\ ( g u. { <. u , v >. } ) Fn dom ( y u. { z } ) ) -> E. f ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) ) |
| 105 |
85 98 104
|
syl6an |
|- ( ( g C_ y /\ g Fn dom y /\ z = <. u , v >. ) -> ( -. u e. dom y -> E. f ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) ) ) |
| 106 |
79 105
|
pm2.61d |
|- ( ( g C_ y /\ g Fn dom y /\ z = <. u , v >. ) -> E. f ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) ) |
| 107 |
106
|
3expa |
|- ( ( ( g C_ y /\ g Fn dom y ) /\ z = <. u , v >. ) -> E. f ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) ) |
| 108 |
107
|
exlimivv |
|- ( E. u E. v ( ( g C_ y /\ g Fn dom y ) /\ z = <. u , v >. ) -> E. f ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) ) |
| 109 |
59 108
|
sylbi |
|- ( ( ( g C_ y /\ g Fn dom y ) /\ dom { z } =/= (/) ) -> E. f ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) ) |
| 110 |
53 109
|
pm2.61dane |
|- ( ( g C_ y /\ g Fn dom y ) -> E. f ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) ) |
| 111 |
110
|
exlimiv |
|- ( E. g ( g C_ y /\ g Fn dom y ) -> E. f ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) ) |
| 112 |
37 111
|
sylbi |
|- ( E. f ( f C_ y /\ f Fn dom y ) -> E. f ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) ) |
| 113 |
112
|
a1i |
|- ( y e. Fin -> ( E. f ( f C_ y /\ f Fn dom y ) -> E. f ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) ) ) |
| 114 |
8 13 18 23 33 113
|
findcard2 |
|- ( w e. Fin -> E. f ( f C_ w /\ f Fn dom w ) ) |
| 115 |
3 114
|
syl |
|- ( Fin = _V -> E. f ( f C_ w /\ f Fn dom w ) ) |
| 116 |
115
|
alrimiv |
|- ( Fin = _V -> A. w E. f ( f C_ w /\ f Fn dom w ) ) |
| 117 |
|
df-ac |
|- ( CHOICE <-> A. w E. f ( f C_ w /\ f Fn dom w ) ) |
| 118 |
116 117
|
sylibr |
|- ( Fin = _V -> CHOICE ) |