Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
|- w e. _V |
2 |
|
eleq2w2 |
|- ( Fin = _V -> ( w e. Fin <-> w e. _V ) ) |
3 |
1 2
|
mpbiri |
|- ( Fin = _V -> w e. Fin ) |
4 |
|
sseq2 |
|- ( x = (/) -> ( f C_ x <-> f C_ (/) ) ) |
5 |
|
dmeq |
|- ( x = (/) -> dom x = dom (/) ) |
6 |
5
|
fneq2d |
|- ( x = (/) -> ( f Fn dom x <-> f Fn dom (/) ) ) |
7 |
4 6
|
anbi12d |
|- ( x = (/) -> ( ( f C_ x /\ f Fn dom x ) <-> ( f C_ (/) /\ f Fn dom (/) ) ) ) |
8 |
7
|
exbidv |
|- ( x = (/) -> ( E. f ( f C_ x /\ f Fn dom x ) <-> E. f ( f C_ (/) /\ f Fn dom (/) ) ) ) |
9 |
|
sseq2 |
|- ( x = y -> ( f C_ x <-> f C_ y ) ) |
10 |
|
dmeq |
|- ( x = y -> dom x = dom y ) |
11 |
10
|
fneq2d |
|- ( x = y -> ( f Fn dom x <-> f Fn dom y ) ) |
12 |
9 11
|
anbi12d |
|- ( x = y -> ( ( f C_ x /\ f Fn dom x ) <-> ( f C_ y /\ f Fn dom y ) ) ) |
13 |
12
|
exbidv |
|- ( x = y -> ( E. f ( f C_ x /\ f Fn dom x ) <-> E. f ( f C_ y /\ f Fn dom y ) ) ) |
14 |
|
sseq2 |
|- ( x = ( y u. { z } ) -> ( f C_ x <-> f C_ ( y u. { z } ) ) ) |
15 |
|
dmeq |
|- ( x = ( y u. { z } ) -> dom x = dom ( y u. { z } ) ) |
16 |
15
|
fneq2d |
|- ( x = ( y u. { z } ) -> ( f Fn dom x <-> f Fn dom ( y u. { z } ) ) ) |
17 |
14 16
|
anbi12d |
|- ( x = ( y u. { z } ) -> ( ( f C_ x /\ f Fn dom x ) <-> ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) ) ) |
18 |
17
|
exbidv |
|- ( x = ( y u. { z } ) -> ( E. f ( f C_ x /\ f Fn dom x ) <-> E. f ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) ) ) |
19 |
|
sseq2 |
|- ( x = w -> ( f C_ x <-> f C_ w ) ) |
20 |
|
dmeq |
|- ( x = w -> dom x = dom w ) |
21 |
20
|
fneq2d |
|- ( x = w -> ( f Fn dom x <-> f Fn dom w ) ) |
22 |
19 21
|
anbi12d |
|- ( x = w -> ( ( f C_ x /\ f Fn dom x ) <-> ( f C_ w /\ f Fn dom w ) ) ) |
23 |
22
|
exbidv |
|- ( x = w -> ( E. f ( f C_ x /\ f Fn dom x ) <-> E. f ( f C_ w /\ f Fn dom w ) ) ) |
24 |
|
ssid |
|- (/) C_ (/) |
25 |
|
fun0 |
|- Fun (/) |
26 |
|
funfn |
|- ( Fun (/) <-> (/) Fn dom (/) ) |
27 |
25 26
|
mpbi |
|- (/) Fn dom (/) |
28 |
|
0ex |
|- (/) e. _V |
29 |
|
sseq1 |
|- ( f = (/) -> ( f C_ (/) <-> (/) C_ (/) ) ) |
30 |
|
fneq1 |
|- ( f = (/) -> ( f Fn dom (/) <-> (/) Fn dom (/) ) ) |
31 |
29 30
|
anbi12d |
|- ( f = (/) -> ( ( f C_ (/) /\ f Fn dom (/) ) <-> ( (/) C_ (/) /\ (/) Fn dom (/) ) ) ) |
32 |
28 31
|
spcev |
|- ( ( (/) C_ (/) /\ (/) Fn dom (/) ) -> E. f ( f C_ (/) /\ f Fn dom (/) ) ) |
33 |
24 27 32
|
mp2an |
|- E. f ( f C_ (/) /\ f Fn dom (/) ) |
34 |
|
sseq1 |
|- ( f = g -> ( f C_ y <-> g C_ y ) ) |
35 |
|
fneq1 |
|- ( f = g -> ( f Fn dom y <-> g Fn dom y ) ) |
36 |
34 35
|
anbi12d |
|- ( f = g -> ( ( f C_ y /\ f Fn dom y ) <-> ( g C_ y /\ g Fn dom y ) ) ) |
37 |
36
|
cbvexvw |
|- ( E. f ( f C_ y /\ f Fn dom y ) <-> E. g ( g C_ y /\ g Fn dom y ) ) |
38 |
|
ssun3 |
|- ( g C_ y -> g C_ ( y u. { z } ) ) |
39 |
38
|
ad2antrr |
|- ( ( ( g C_ y /\ g Fn dom y ) /\ dom { z } = (/) ) -> g C_ ( y u. { z } ) ) |
40 |
|
dmun |
|- dom ( y u. { z } ) = ( dom y u. dom { z } ) |
41 |
|
uneq2 |
|- ( dom { z } = (/) -> ( dom y u. dom { z } ) = ( dom y u. (/) ) ) |
42 |
|
un0 |
|- ( dom y u. (/) ) = dom y |
43 |
41 42
|
eqtrdi |
|- ( dom { z } = (/) -> ( dom y u. dom { z } ) = dom y ) |
44 |
40 43
|
syl5eq |
|- ( dom { z } = (/) -> dom ( y u. { z } ) = dom y ) |
45 |
44
|
fneq2d |
|- ( dom { z } = (/) -> ( g Fn dom ( y u. { z } ) <-> g Fn dom y ) ) |
46 |
45
|
biimparc |
|- ( ( g Fn dom y /\ dom { z } = (/) ) -> g Fn dom ( y u. { z } ) ) |
47 |
46
|
adantll |
|- ( ( ( g C_ y /\ g Fn dom y ) /\ dom { z } = (/) ) -> g Fn dom ( y u. { z } ) ) |
48 |
|
vex |
|- g e. _V |
49 |
|
sseq1 |
|- ( f = g -> ( f C_ ( y u. { z } ) <-> g C_ ( y u. { z } ) ) ) |
50 |
|
fneq1 |
|- ( f = g -> ( f Fn dom ( y u. { z } ) <-> g Fn dom ( y u. { z } ) ) ) |
51 |
49 50
|
anbi12d |
|- ( f = g -> ( ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) <-> ( g C_ ( y u. { z } ) /\ g Fn dom ( y u. { z } ) ) ) ) |
52 |
48 51
|
spcev |
|- ( ( g C_ ( y u. { z } ) /\ g Fn dom ( y u. { z } ) ) -> E. f ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) ) |
53 |
39 47 52
|
syl2anc |
|- ( ( ( g C_ y /\ g Fn dom y ) /\ dom { z } = (/) ) -> E. f ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) ) |
54 |
|
dmsnn0 |
|- ( z e. ( _V X. _V ) <-> dom { z } =/= (/) ) |
55 |
|
elvv |
|- ( z e. ( _V X. _V ) <-> E. u E. v z = <. u , v >. ) |
56 |
54 55
|
bitr3i |
|- ( dom { z } =/= (/) <-> E. u E. v z = <. u , v >. ) |
57 |
56
|
anbi2i |
|- ( ( ( g C_ y /\ g Fn dom y ) /\ dom { z } =/= (/) ) <-> ( ( g C_ y /\ g Fn dom y ) /\ E. u E. v z = <. u , v >. ) ) |
58 |
|
19.42vv |
|- ( E. u E. v ( ( g C_ y /\ g Fn dom y ) /\ z = <. u , v >. ) <-> ( ( g C_ y /\ g Fn dom y ) /\ E. u E. v z = <. u , v >. ) ) |
59 |
57 58
|
bitr4i |
|- ( ( ( g C_ y /\ g Fn dom y ) /\ dom { z } =/= (/) ) <-> E. u E. v ( ( g C_ y /\ g Fn dom y ) /\ z = <. u , v >. ) ) |
60 |
38
|
3ad2ant1 |
|- ( ( g C_ y /\ g Fn dom y /\ z = <. u , v >. ) -> g C_ ( y u. { z } ) ) |
61 |
|
snssi |
|- ( u e. dom y -> { u } C_ dom y ) |
62 |
|
ssequn2 |
|- ( { u } C_ dom y <-> ( dom y u. { u } ) = dom y ) |
63 |
61 62
|
sylib |
|- ( u e. dom y -> ( dom y u. { u } ) = dom y ) |
64 |
63
|
fneq2d |
|- ( u e. dom y -> ( g Fn ( dom y u. { u } ) <-> g Fn dom y ) ) |
65 |
64
|
biimparc |
|- ( ( g Fn dom y /\ u e. dom y ) -> g Fn ( dom y u. { u } ) ) |
66 |
65
|
3adant2 |
|- ( ( g Fn dom y /\ z = <. u , v >. /\ u e. dom y ) -> g Fn ( dom y u. { u } ) ) |
67 |
|
sneq |
|- ( z = <. u , v >. -> { z } = { <. u , v >. } ) |
68 |
67
|
dmeqd |
|- ( z = <. u , v >. -> dom { z } = dom { <. u , v >. } ) |
69 |
|
vex |
|- v e. _V |
70 |
69
|
dmsnop |
|- dom { <. u , v >. } = { u } |
71 |
68 70
|
eqtrdi |
|- ( z = <. u , v >. -> dom { z } = { u } ) |
72 |
71
|
uneq2d |
|- ( z = <. u , v >. -> ( dom y u. dom { z } ) = ( dom y u. { u } ) ) |
73 |
40 72
|
syl5eq |
|- ( z = <. u , v >. -> dom ( y u. { z } ) = ( dom y u. { u } ) ) |
74 |
73
|
fneq2d |
|- ( z = <. u , v >. -> ( g Fn dom ( y u. { z } ) <-> g Fn ( dom y u. { u } ) ) ) |
75 |
74
|
3ad2ant2 |
|- ( ( g Fn dom y /\ z = <. u , v >. /\ u e. dom y ) -> ( g Fn dom ( y u. { z } ) <-> g Fn ( dom y u. { u } ) ) ) |
76 |
66 75
|
mpbird |
|- ( ( g Fn dom y /\ z = <. u , v >. /\ u e. dom y ) -> g Fn dom ( y u. { z } ) ) |
77 |
76
|
3expia |
|- ( ( g Fn dom y /\ z = <. u , v >. ) -> ( u e. dom y -> g Fn dom ( y u. { z } ) ) ) |
78 |
77
|
3adant1 |
|- ( ( g C_ y /\ g Fn dom y /\ z = <. u , v >. ) -> ( u e. dom y -> g Fn dom ( y u. { z } ) ) ) |
79 |
60 78 52
|
syl6an |
|- ( ( g C_ y /\ g Fn dom y /\ z = <. u , v >. ) -> ( u e. dom y -> E. f ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) ) ) |
80 |
67
|
uneq2d |
|- ( z = <. u , v >. -> ( g u. { z } ) = ( g u. { <. u , v >. } ) ) |
81 |
80
|
adantl |
|- ( ( g C_ y /\ z = <. u , v >. ) -> ( g u. { z } ) = ( g u. { <. u , v >. } ) ) |
82 |
|
unss1 |
|- ( g C_ y -> ( g u. { z } ) C_ ( y u. { z } ) ) |
83 |
82
|
adantr |
|- ( ( g C_ y /\ z = <. u , v >. ) -> ( g u. { z } ) C_ ( y u. { z } ) ) |
84 |
81 83
|
eqsstrrd |
|- ( ( g C_ y /\ z = <. u , v >. ) -> ( g u. { <. u , v >. } ) C_ ( y u. { z } ) ) |
85 |
84
|
3adant2 |
|- ( ( g C_ y /\ g Fn dom y /\ z = <. u , v >. ) -> ( g u. { <. u , v >. } ) C_ ( y u. { z } ) ) |
86 |
|
vex |
|- u e. _V |
87 |
86
|
a1i |
|- ( ( g Fn dom y /\ -. u e. dom y ) -> u e. _V ) |
88 |
69
|
a1i |
|- ( ( g Fn dom y /\ -. u e. dom y ) -> v e. _V ) |
89 |
|
simpl |
|- ( ( g Fn dom y /\ -. u e. dom y ) -> g Fn dom y ) |
90 |
|
eqid |
|- ( g u. { <. u , v >. } ) = ( g u. { <. u , v >. } ) |
91 |
|
eqid |
|- ( dom y u. { u } ) = ( dom y u. { u } ) |
92 |
|
simpr |
|- ( ( g Fn dom y /\ -. u e. dom y ) -> -. u e. dom y ) |
93 |
87 88 89 90 91 92
|
fnunop |
|- ( ( g Fn dom y /\ -. u e. dom y ) -> ( g u. { <. u , v >. } ) Fn ( dom y u. { u } ) ) |
94 |
93
|
ex |
|- ( g Fn dom y -> ( -. u e. dom y -> ( g u. { <. u , v >. } ) Fn ( dom y u. { u } ) ) ) |
95 |
94
|
3ad2ant2 |
|- ( ( g C_ y /\ g Fn dom y /\ z = <. u , v >. ) -> ( -. u e. dom y -> ( g u. { <. u , v >. } ) Fn ( dom y u. { u } ) ) ) |
96 |
73
|
fneq2d |
|- ( z = <. u , v >. -> ( ( g u. { <. u , v >. } ) Fn dom ( y u. { z } ) <-> ( g u. { <. u , v >. } ) Fn ( dom y u. { u } ) ) ) |
97 |
96
|
3ad2ant3 |
|- ( ( g C_ y /\ g Fn dom y /\ z = <. u , v >. ) -> ( ( g u. { <. u , v >. } ) Fn dom ( y u. { z } ) <-> ( g u. { <. u , v >. } ) Fn ( dom y u. { u } ) ) ) |
98 |
95 97
|
sylibrd |
|- ( ( g C_ y /\ g Fn dom y /\ z = <. u , v >. ) -> ( -. u e. dom y -> ( g u. { <. u , v >. } ) Fn dom ( y u. { z } ) ) ) |
99 |
|
snex |
|- { <. u , v >. } e. _V |
100 |
48 99
|
unex |
|- ( g u. { <. u , v >. } ) e. _V |
101 |
|
sseq1 |
|- ( f = ( g u. { <. u , v >. } ) -> ( f C_ ( y u. { z } ) <-> ( g u. { <. u , v >. } ) C_ ( y u. { z } ) ) ) |
102 |
|
fneq1 |
|- ( f = ( g u. { <. u , v >. } ) -> ( f Fn dom ( y u. { z } ) <-> ( g u. { <. u , v >. } ) Fn dom ( y u. { z } ) ) ) |
103 |
101 102
|
anbi12d |
|- ( f = ( g u. { <. u , v >. } ) -> ( ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) <-> ( ( g u. { <. u , v >. } ) C_ ( y u. { z } ) /\ ( g u. { <. u , v >. } ) Fn dom ( y u. { z } ) ) ) ) |
104 |
100 103
|
spcev |
|- ( ( ( g u. { <. u , v >. } ) C_ ( y u. { z } ) /\ ( g u. { <. u , v >. } ) Fn dom ( y u. { z } ) ) -> E. f ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) ) |
105 |
85 98 104
|
syl6an |
|- ( ( g C_ y /\ g Fn dom y /\ z = <. u , v >. ) -> ( -. u e. dom y -> E. f ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) ) ) |
106 |
79 105
|
pm2.61d |
|- ( ( g C_ y /\ g Fn dom y /\ z = <. u , v >. ) -> E. f ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) ) |
107 |
106
|
3expa |
|- ( ( ( g C_ y /\ g Fn dom y ) /\ z = <. u , v >. ) -> E. f ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) ) |
108 |
107
|
exlimivv |
|- ( E. u E. v ( ( g C_ y /\ g Fn dom y ) /\ z = <. u , v >. ) -> E. f ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) ) |
109 |
59 108
|
sylbi |
|- ( ( ( g C_ y /\ g Fn dom y ) /\ dom { z } =/= (/) ) -> E. f ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) ) |
110 |
53 109
|
pm2.61dane |
|- ( ( g C_ y /\ g Fn dom y ) -> E. f ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) ) |
111 |
110
|
exlimiv |
|- ( E. g ( g C_ y /\ g Fn dom y ) -> E. f ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) ) |
112 |
37 111
|
sylbi |
|- ( E. f ( f C_ y /\ f Fn dom y ) -> E. f ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) ) |
113 |
112
|
a1i |
|- ( y e. Fin -> ( E. f ( f C_ y /\ f Fn dom y ) -> E. f ( f C_ ( y u. { z } ) /\ f Fn dom ( y u. { z } ) ) ) ) |
114 |
8 13 18 23 33 113
|
findcard2 |
|- ( w e. Fin -> E. f ( f C_ w /\ f Fn dom w ) ) |
115 |
3 114
|
syl |
|- ( Fin = _V -> E. f ( f C_ w /\ f Fn dom w ) ) |
116 |
115
|
alrimiv |
|- ( Fin = _V -> A. w E. f ( f C_ w /\ f Fn dom w ) ) |
117 |
|
df-ac |
|- ( CHOICE <-> A. w E. f ( f C_ w /\ f Fn dom w ) ) |
118 |
116 117
|
sylibr |
|- ( Fin = _V -> CHOICE ) |