Step |
Hyp |
Ref |
Expression |
1 |
|
fmptunsnop.1 |
|- ( ph -> F Fn A ) |
2 |
|
fmptunsnop.2 |
|- ( ph -> X e. A ) |
3 |
|
fmptunsnop.3 |
|- ( ph -> Y e. B ) |
4 |
|
mptun |
|- ( x e. ( ( A \ { X } ) u. { X } ) |-> if ( x = X , Y , ( F ` x ) ) ) = ( ( x e. ( A \ { X } ) |-> if ( x = X , Y , ( F ` x ) ) ) u. ( x e. { X } |-> if ( x = X , Y , ( F ` x ) ) ) ) |
5 |
|
difsnid |
|- ( X e. A -> ( ( A \ { X } ) u. { X } ) = A ) |
6 |
2 5
|
syl |
|- ( ph -> ( ( A \ { X } ) u. { X } ) = A ) |
7 |
6
|
mpteq1d |
|- ( ph -> ( x e. ( ( A \ { X } ) u. { X } ) |-> if ( x = X , Y , ( F ` x ) ) ) = ( x e. A |-> if ( x = X , Y , ( F ` x ) ) ) ) |
8 |
|
eldifsni |
|- ( x e. ( A \ { X } ) -> x =/= X ) |
9 |
8
|
adantl |
|- ( ( ph /\ x e. ( A \ { X } ) ) -> x =/= X ) |
10 |
9
|
neneqd |
|- ( ( ph /\ x e. ( A \ { X } ) ) -> -. x = X ) |
11 |
10
|
iffalsed |
|- ( ( ph /\ x e. ( A \ { X } ) ) -> if ( x = X , Y , ( F ` x ) ) = ( F ` x ) ) |
12 |
11
|
mpteq2dva |
|- ( ph -> ( x e. ( A \ { X } ) |-> if ( x = X , Y , ( F ` x ) ) ) = ( x e. ( A \ { X } ) |-> ( F ` x ) ) ) |
13 |
|
dffn3 |
|- ( F Fn A <-> F : A --> ran F ) |
14 |
1 13
|
sylib |
|- ( ph -> F : A --> ran F ) |
15 |
|
difssd |
|- ( ph -> ( A \ { X } ) C_ A ) |
16 |
14 15
|
feqresmpt |
|- ( ph -> ( F |` ( A \ { X } ) ) = ( x e. ( A \ { X } ) |-> ( F ` x ) ) ) |
17 |
12 16
|
eqtr4d |
|- ( ph -> ( x e. ( A \ { X } ) |-> if ( x = X , Y , ( F ` x ) ) ) = ( F |` ( A \ { X } ) ) ) |
18 |
|
iftrue |
|- ( x = X -> if ( x = X , Y , ( F ` x ) ) = Y ) |
19 |
18
|
adantl |
|- ( ( ph /\ x = X ) -> if ( x = X , Y , ( F ` x ) ) = Y ) |
20 |
19 2 3
|
fmptsnd |
|- ( ph -> { <. X , Y >. } = ( x e. { X } |-> if ( x = X , Y , ( F ` x ) ) ) ) |
21 |
20
|
eqcomd |
|- ( ph -> ( x e. { X } |-> if ( x = X , Y , ( F ` x ) ) ) = { <. X , Y >. } ) |
22 |
17 21
|
uneq12d |
|- ( ph -> ( ( x e. ( A \ { X } ) |-> if ( x = X , Y , ( F ` x ) ) ) u. ( x e. { X } |-> if ( x = X , Y , ( F ` x ) ) ) ) = ( ( F |` ( A \ { X } ) ) u. { <. X , Y >. } ) ) |
23 |
4 7 22
|
3eqtr3a |
|- ( ph -> ( x e. A |-> if ( x = X , Y , ( F ` x ) ) ) = ( ( F |` ( A \ { X } ) ) u. { <. X , Y >. } ) ) |