Metamath Proof Explorer


Theorem fmptunsnop

Description: Two ways to express a function with a value replaced. (Contributed by Thierry Arnoux, 5-Oct-2025)

Ref Expression
Hypotheses fmptunsnop.1 φ F Fn A
fmptunsnop.2 φ X A
fmptunsnop.3 φ Y B
Assertion fmptunsnop φ x A if x = X Y F x = F A X X Y

Proof

Step Hyp Ref Expression
1 fmptunsnop.1 φ F Fn A
2 fmptunsnop.2 φ X A
3 fmptunsnop.3 φ Y B
4 mptun x A X X if x = X Y F x = x A X if x = X Y F x x X if x = X Y F x
5 difsnid X A A X X = A
6 2 5 syl φ A X X = A
7 6 mpteq1d φ x A X X if x = X Y F x = x A if x = X Y F x
8 eldifsni x A X x X
9 8 adantl φ x A X x X
10 9 neneqd φ x A X ¬ x = X
11 10 iffalsed φ x A X if x = X Y F x = F x
12 11 mpteq2dva φ x A X if x = X Y F x = x A X F x
13 dffn3 F Fn A F : A ran F
14 1 13 sylib φ F : A ran F
15 difssd φ A X A
16 14 15 feqresmpt φ F A X = x A X F x
17 12 16 eqtr4d φ x A X if x = X Y F x = F A X
18 iftrue x = X if x = X Y F x = Y
19 18 adantl φ x = X if x = X Y F x = Y
20 19 2 3 fmptsnd φ X Y = x X if x = X Y F x
21 20 eqcomd φ x X if x = X Y F x = X Y
22 17 21 uneq12d φ x A X if x = X Y F x x X if x = X Y F x = F A X X Y
23 4 7 22 3eqtr3a φ x A if x = X Y F x = F A X X Y