Step |
Hyp |
Ref |
Expression |
1 |
|
fmptunsnop.1 |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
2 |
|
fmptunsnop.2 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
3 |
|
fmptunsnop.3 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
4 |
|
mptun |
⊢ ( 𝑥 ∈ ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ↦ if ( 𝑥 = 𝑋 , 𝑌 , ( 𝐹 ‘ 𝑥 ) ) ) = ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝑋 } ) ↦ if ( 𝑥 = 𝑋 , 𝑌 , ( 𝐹 ‘ 𝑥 ) ) ) ∪ ( 𝑥 ∈ { 𝑋 } ↦ if ( 𝑥 = 𝑋 , 𝑌 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
5 |
|
difsnid |
⊢ ( 𝑋 ∈ 𝐴 → ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) = 𝐴 ) |
6 |
2 5
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) = 𝐴 ) |
7 |
6
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ↦ if ( 𝑥 = 𝑋 , 𝑌 , ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 = 𝑋 , 𝑌 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
8 |
|
eldifsni |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 𝑋 } ) → 𝑥 ≠ 𝑋 ) |
9 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ { 𝑋 } ) ) → 𝑥 ≠ 𝑋 ) |
10 |
9
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ { 𝑋 } ) ) → ¬ 𝑥 = 𝑋 ) |
11 |
10
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ { 𝑋 } ) ) → if ( 𝑥 = 𝑋 , 𝑌 , ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
12 |
11
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∖ { 𝑋 } ) ↦ if ( 𝑥 = 𝑋 , 𝑌 , ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐴 ∖ { 𝑋 } ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
13 |
|
dffn3 |
⊢ ( 𝐹 Fn 𝐴 ↔ 𝐹 : 𝐴 ⟶ ran 𝐹 ) |
14 |
1 13
|
sylib |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ran 𝐹 ) |
15 |
|
difssd |
⊢ ( 𝜑 → ( 𝐴 ∖ { 𝑋 } ) ⊆ 𝐴 ) |
16 |
14 15
|
feqresmpt |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) = ( 𝑥 ∈ ( 𝐴 ∖ { 𝑋 } ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
17 |
12 16
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∖ { 𝑋 } ) ↦ if ( 𝑥 = 𝑋 , 𝑌 , ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) ) |
18 |
|
iftrue |
⊢ ( 𝑥 = 𝑋 → if ( 𝑥 = 𝑋 , 𝑌 , ( 𝐹 ‘ 𝑥 ) ) = 𝑌 ) |
19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → if ( 𝑥 = 𝑋 , 𝑌 , ( 𝐹 ‘ 𝑥 ) ) = 𝑌 ) |
20 |
19 2 3
|
fmptsnd |
⊢ ( 𝜑 → { 〈 𝑋 , 𝑌 〉 } = ( 𝑥 ∈ { 𝑋 } ↦ if ( 𝑥 = 𝑋 , 𝑌 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
21 |
20
|
eqcomd |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑋 } ↦ if ( 𝑥 = 𝑋 , 𝑌 , ( 𝐹 ‘ 𝑥 ) ) ) = { 〈 𝑋 , 𝑌 〉 } ) |
22 |
17 21
|
uneq12d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝑋 } ) ↦ if ( 𝑥 = 𝑋 , 𝑌 , ( 𝐹 ‘ 𝑥 ) ) ) ∪ ( 𝑥 ∈ { 𝑋 } ↦ if ( 𝑥 = 𝑋 , 𝑌 , ( 𝐹 ‘ 𝑥 ) ) ) ) = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , 𝑌 〉 } ) ) |
23 |
4 7 22
|
3eqtr3a |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 = 𝑋 , 𝑌 , ( 𝐹 ‘ 𝑥 ) ) ) = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , 𝑌 〉 } ) ) |