| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnwe2.su |
|- ( z = ( F ` x ) -> S = U ) |
| 2 |
|
fnwe2.t |
|- T = { <. x , y >. | ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x U y ) ) } |
| 3 |
|
fnwe2.s |
|- ( ( ph /\ x e. A ) -> U We { y e. A | ( F ` y ) = ( F ` x ) } ) |
| 4 |
|
fnwe2.f |
|- ( ph -> ( F |` A ) : A --> B ) |
| 5 |
|
fnwe2.r |
|- ( ph -> R We B ) |
| 6 |
3
|
adantlr |
|- ( ( ( ph /\ ( a C_ A /\ a =/= (/) ) ) /\ x e. A ) -> U We { y e. A | ( F ` y ) = ( F ` x ) } ) |
| 7 |
4
|
adantr |
|- ( ( ph /\ ( a C_ A /\ a =/= (/) ) ) -> ( F |` A ) : A --> B ) |
| 8 |
5
|
adantr |
|- ( ( ph /\ ( a C_ A /\ a =/= (/) ) ) -> R We B ) |
| 9 |
|
simprl |
|- ( ( ph /\ ( a C_ A /\ a =/= (/) ) ) -> a C_ A ) |
| 10 |
|
simprr |
|- ( ( ph /\ ( a C_ A /\ a =/= (/) ) ) -> a =/= (/) ) |
| 11 |
1 2 6 7 8 9 10
|
fnwe2lem2 |
|- ( ( ph /\ ( a C_ A /\ a =/= (/) ) ) -> E. c e. a A. d e. a -. d T c ) |
| 12 |
11
|
ex |
|- ( ph -> ( ( a C_ A /\ a =/= (/) ) -> E. c e. a A. d e. a -. d T c ) ) |
| 13 |
12
|
alrimiv |
|- ( ph -> A. a ( ( a C_ A /\ a =/= (/) ) -> E. c e. a A. d e. a -. d T c ) ) |
| 14 |
|
df-fr |
|- ( T Fr A <-> A. a ( ( a C_ A /\ a =/= (/) ) -> E. c e. a A. d e. a -. d T c ) ) |
| 15 |
13 14
|
sylibr |
|- ( ph -> T Fr A ) |
| 16 |
3
|
adantlr |
|- ( ( ( ph /\ ( a e. A /\ b e. A ) ) /\ x e. A ) -> U We { y e. A | ( F ` y ) = ( F ` x ) } ) |
| 17 |
4
|
adantr |
|- ( ( ph /\ ( a e. A /\ b e. A ) ) -> ( F |` A ) : A --> B ) |
| 18 |
5
|
adantr |
|- ( ( ph /\ ( a e. A /\ b e. A ) ) -> R We B ) |
| 19 |
|
simprl |
|- ( ( ph /\ ( a e. A /\ b e. A ) ) -> a e. A ) |
| 20 |
|
simprr |
|- ( ( ph /\ ( a e. A /\ b e. A ) ) -> b e. A ) |
| 21 |
1 2 16 17 18 19 20
|
fnwe2lem3 |
|- ( ( ph /\ ( a e. A /\ b e. A ) ) -> ( a T b \/ a = b \/ b T a ) ) |
| 22 |
21
|
ralrimivva |
|- ( ph -> A. a e. A A. b e. A ( a T b \/ a = b \/ b T a ) ) |
| 23 |
|
dfwe2 |
|- ( T We A <-> ( T Fr A /\ A. a e. A A. b e. A ( a T b \/ a = b \/ b T a ) ) ) |
| 24 |
15 22 23
|
sylanbrc |
|- ( ph -> T We A ) |