Metamath Proof Explorer


Theorem fnwe2

Description: A well-ordering can be constructed on a partitioned set by patching together well-orderings on each partition using a well-ordering on the partitions themselves. Similar to fnwe but does not require the within-partition ordering to be globally well. (Contributed by Stefan O'Rear, 19-Jan-2015)

Ref Expression
Hypotheses fnwe2.su z=FxS=U
fnwe2.t T=xy|FxRFyFx=FyxUy
fnwe2.s φxAUWeyA|Fy=Fx
fnwe2.f φFA:AB
fnwe2.r φRWeB
Assertion fnwe2 φTWeA

Proof

Step Hyp Ref Expression
1 fnwe2.su z=FxS=U
2 fnwe2.t T=xy|FxRFyFx=FyxUy
3 fnwe2.s φxAUWeyA|Fy=Fx
4 fnwe2.f φFA:AB
5 fnwe2.r φRWeB
6 3 adantlr φaAaxAUWeyA|Fy=Fx
7 4 adantr φaAaFA:AB
8 5 adantr φaAaRWeB
9 simprl φaAaaA
10 simprr φaAaa
11 1 2 6 7 8 9 10 fnwe2lem2 φaAacada¬dTc
12 11 ex φaAacada¬dTc
13 12 alrimiv φaaAacada¬dTc
14 df-fr TFrAaaAacada¬dTc
15 13 14 sylibr φTFrA
16 3 adantlr φaAbAxAUWeyA|Fy=Fx
17 4 adantr φaAbAFA:AB
18 5 adantr φaAbARWeB
19 simprl φaAbAaA
20 simprr φaAbAbA
21 1 2 16 17 18 19 20 fnwe2lem3 φaAbAaTba=bbTa
22 21 ralrimivva φaAbAaTba=bbTa
23 dfwe2 TWeATFrAaAbAaTba=bbTa
24 15 22 23 sylanbrc φTWeA