Step |
Hyp |
Ref |
Expression |
1 |
|
fnwe2.su |
|
2 |
|
fnwe2.t |
|
3 |
|
fnwe2.s |
|
4 |
|
fnwe2.f |
|
5 |
|
fnwe2.r |
|
6 |
|
fnwe2lem3.a |
|
7 |
|
fnwe2lem3.b |
|
8 |
|
animorrl |
|
9 |
1 2
|
fnwe2val |
|
10 |
8 9
|
sylibr |
|
11 |
10
|
3mix1d |
|
12 |
|
simplr |
|
13 |
|
simpr |
|
14 |
12 13
|
jca |
|
15 |
14
|
olcd |
|
16 |
15 9
|
sylibr |
|
17 |
16
|
3mix1d |
|
18 |
|
3mix2 |
|
19 |
18
|
adantl |
|
20 |
|
simplr |
|
21 |
20
|
eqcomd |
|
22 |
|
csbeq1 |
|
23 |
22
|
adantl |
|
24 |
23
|
breqd |
|
25 |
24
|
biimpa |
|
26 |
21 25
|
jca |
|
27 |
26
|
olcd |
|
28 |
1 2
|
fnwe2val |
|
29 |
27 28
|
sylibr |
|
30 |
29
|
3mix3d |
|
31 |
1 2 3
|
fnwe2lem1 |
|
32 |
6 31
|
mpdan |
|
33 |
|
weso |
|
34 |
32 33
|
syl |
|
35 |
34
|
adantr |
|
36 |
|
fveqeq2 |
|
37 |
6
|
adantr |
|
38 |
|
eqidd |
|
39 |
36 37 38
|
elrabd |
|
40 |
|
fveqeq2 |
|
41 |
7
|
adantr |
|
42 |
|
simpr |
|
43 |
42
|
eqcomd |
|
44 |
40 41 43
|
elrabd |
|
45 |
|
solin |
|
46 |
35 39 44 45
|
syl12anc |
|
47 |
17 19 30 46
|
mpjao3dan |
|
48 |
|
animorrl |
|
49 |
48 28
|
sylibr |
|
50 |
49
|
3mix3d |
|
51 |
|
weso |
|
52 |
5 51
|
syl |
|
53 |
6
|
fvresd |
|
54 |
4 6
|
ffvelrnd |
|
55 |
53 54
|
eqeltrrd |
|
56 |
7
|
fvresd |
|
57 |
4 7
|
ffvelrnd |
|
58 |
56 57
|
eqeltrrd |
|
59 |
|
solin |
|
60 |
52 55 58 59
|
syl12anc |
|
61 |
11 47 50 60
|
mpjao3dan |
|