| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnwe2.su |
|
| 2 |
|
fnwe2.t |
|
| 3 |
|
fnwe2.s |
|
| 4 |
|
fnwe2.f |
|
| 5 |
|
fnwe2.r |
|
| 6 |
|
fnwe2lem3.a |
|
| 7 |
|
fnwe2lem3.b |
|
| 8 |
|
animorrl |
|
| 9 |
1 2
|
fnwe2val |
|
| 10 |
8 9
|
sylibr |
|
| 11 |
10
|
3mix1d |
|
| 12 |
|
simplr |
|
| 13 |
|
simpr |
|
| 14 |
12 13
|
jca |
|
| 15 |
14
|
olcd |
|
| 16 |
15 9
|
sylibr |
|
| 17 |
16
|
3mix1d |
|
| 18 |
|
3mix2 |
|
| 19 |
18
|
adantl |
|
| 20 |
|
simplr |
|
| 21 |
20
|
eqcomd |
|
| 22 |
|
csbeq1 |
|
| 23 |
22
|
adantl |
|
| 24 |
23
|
breqd |
|
| 25 |
24
|
biimpa |
|
| 26 |
21 25
|
jca |
|
| 27 |
26
|
olcd |
|
| 28 |
1 2
|
fnwe2val |
|
| 29 |
27 28
|
sylibr |
|
| 30 |
29
|
3mix3d |
|
| 31 |
1 2 3
|
fnwe2lem1 |
|
| 32 |
6 31
|
mpdan |
|
| 33 |
|
weso |
|
| 34 |
32 33
|
syl |
|
| 35 |
34
|
adantr |
|
| 36 |
|
fveqeq2 |
|
| 37 |
6
|
adantr |
|
| 38 |
|
eqidd |
|
| 39 |
36 37 38
|
elrabd |
|
| 40 |
|
fveqeq2 |
|
| 41 |
7
|
adantr |
|
| 42 |
|
simpr |
|
| 43 |
42
|
eqcomd |
|
| 44 |
40 41 43
|
elrabd |
|
| 45 |
|
solin |
|
| 46 |
35 39 44 45
|
syl12anc |
|
| 47 |
17 19 30 46
|
mpjao3dan |
|
| 48 |
|
animorrl |
|
| 49 |
48 28
|
sylibr |
|
| 50 |
49
|
3mix3d |
|
| 51 |
|
weso |
|
| 52 |
5 51
|
syl |
|
| 53 |
6
|
fvresd |
|
| 54 |
4 6
|
ffvelcdmd |
|
| 55 |
53 54
|
eqeltrrd |
|
| 56 |
7
|
fvresd |
|
| 57 |
4 7
|
ffvelcdmd |
|
| 58 |
56 57
|
eqeltrrd |
|
| 59 |
|
solin |
|
| 60 |
52 55 58 59
|
syl12anc |
|
| 61 |
11 47 50 60
|
mpjao3dan |
|