| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnwe2.su |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → 𝑆 = 𝑈 ) |
| 2 |
|
fnwe2.t |
⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑈 𝑦 ) ) } |
| 3 |
|
fnwe2.s |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑈 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) } ) |
| 4 |
|
fnwe2.f |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ) |
| 5 |
|
fnwe2.r |
⊢ ( 𝜑 → 𝑅 We 𝐵 ) |
| 6 |
|
fnwe2lem3.a |
⊢ ( 𝜑 → 𝑎 ∈ 𝐴 ) |
| 7 |
|
fnwe2lem3.b |
⊢ ( 𝜑 → 𝑏 ∈ 𝐴 ) |
| 8 |
|
animorrl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑏 ) ) → ( ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑏 ) ∨ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ∧ 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ) ) ) |
| 9 |
1 2
|
fnwe2val |
⊢ ( 𝑎 𝑇 𝑏 ↔ ( ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑏 ) ∨ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ∧ 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ) ) ) |
| 10 |
8 9
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑏 ) ) → 𝑎 𝑇 𝑏 ) |
| 11 |
10
|
3mix1d |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑏 ) ) → ( 𝑎 𝑇 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑇 𝑎 ) ) |
| 12 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) |
| 13 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ) → 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ) |
| 14 |
12 13
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ∧ 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ) ) |
| 15 |
14
|
olcd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ) → ( ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑏 ) ∨ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ∧ 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ) ) ) |
| 16 |
15 9
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ) → 𝑎 𝑇 𝑏 ) |
| 17 |
16
|
3mix1d |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ) → ( 𝑎 𝑇 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑇 𝑎 ) ) |
| 18 |
|
3mix2 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 𝑇 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑇 𝑎 ) ) |
| 19 |
18
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ 𝑎 = 𝑏 ) → ( 𝑎 𝑇 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑇 𝑎 ) ) |
| 20 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ 𝑏 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑎 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) |
| 21 |
20
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ 𝑏 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑎 ) → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 22 |
|
csbeq1 |
⊢ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 = ⦋ ( 𝐹 ‘ 𝑏 ) / 𝑧 ⦌ 𝑆 ) |
| 23 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 = ⦋ ( 𝐹 ‘ 𝑏 ) / 𝑧 ⦌ 𝑆 ) |
| 24 |
23
|
breqd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 𝑏 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑎 ↔ 𝑏 ⦋ ( 𝐹 ‘ 𝑏 ) / 𝑧 ⦌ 𝑆 𝑎 ) ) |
| 25 |
24
|
biimpa |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ 𝑏 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑎 ) → 𝑏 ⦋ ( 𝐹 ‘ 𝑏 ) / 𝑧 ⦌ 𝑆 𝑎 ) |
| 26 |
21 25
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ 𝑏 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑎 ) → ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ∧ 𝑏 ⦋ ( 𝐹 ‘ 𝑏 ) / 𝑧 ⦌ 𝑆 𝑎 ) ) |
| 27 |
26
|
olcd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ 𝑏 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑎 ) → ( ( 𝐹 ‘ 𝑏 ) 𝑅 ( 𝐹 ‘ 𝑎 ) ∨ ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ∧ 𝑏 ⦋ ( 𝐹 ‘ 𝑏 ) / 𝑧 ⦌ 𝑆 𝑎 ) ) ) |
| 28 |
1 2
|
fnwe2val |
⊢ ( 𝑏 𝑇 𝑎 ↔ ( ( 𝐹 ‘ 𝑏 ) 𝑅 ( 𝐹 ‘ 𝑎 ) ∨ ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ∧ 𝑏 ⦋ ( 𝐹 ‘ 𝑏 ) / 𝑧 ⦌ 𝑆 𝑎 ) ) ) |
| 29 |
27 28
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ 𝑏 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑎 ) → 𝑏 𝑇 𝑎 ) |
| 30 |
29
|
3mix3d |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ 𝑏 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑎 ) → ( 𝑎 𝑇 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑇 𝑎 ) ) |
| 31 |
1 2 3
|
fnwe2lem1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } ) |
| 32 |
6 31
|
mpdan |
⊢ ( 𝜑 → ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } ) |
| 33 |
|
weso |
⊢ ( ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } → ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 Or { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } ) |
| 34 |
32 33
|
syl |
⊢ ( 𝜑 → ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 Or { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 Or { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } ) |
| 36 |
|
fveqeq2 |
⊢ ( 𝑦 = 𝑎 → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ) |
| 37 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → 𝑎 ∈ 𝐴 ) |
| 38 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 39 |
36 37 38
|
elrabd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → 𝑎 ∈ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } ) |
| 40 |
|
fveqeq2 |
⊢ ( 𝑦 = 𝑏 → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) ↔ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) ) |
| 41 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → 𝑏 ∈ 𝐴 ) |
| 42 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) |
| 43 |
42
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 44 |
40 41 43
|
elrabd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → 𝑏 ∈ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } ) |
| 45 |
|
solin |
⊢ ( ( ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 Or { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } ∧ ( 𝑎 ∈ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } ∧ 𝑏 ∈ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } ) ) → ( 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑎 ) ) |
| 46 |
35 39 44 45
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 𝑎 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 𝑎 ) ) |
| 47 |
17 19 30 46
|
mpjao3dan |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 𝑎 𝑇 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑇 𝑎 ) ) |
| 48 |
|
animorrl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑏 ) 𝑅 ( 𝐹 ‘ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑏 ) 𝑅 ( 𝐹 ‘ 𝑎 ) ∨ ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ∧ 𝑏 ⦋ ( 𝐹 ‘ 𝑏 ) / 𝑧 ⦌ 𝑆 𝑎 ) ) ) |
| 49 |
48 28
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑏 ) 𝑅 ( 𝐹 ‘ 𝑎 ) ) → 𝑏 𝑇 𝑎 ) |
| 50 |
49
|
3mix3d |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑏 ) 𝑅 ( 𝐹 ‘ 𝑎 ) ) → ( 𝑎 𝑇 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑇 𝑎 ) ) |
| 51 |
|
weso |
⊢ ( 𝑅 We 𝐵 → 𝑅 Or 𝐵 ) |
| 52 |
5 51
|
syl |
⊢ ( 𝜑 → 𝑅 Or 𝐵 ) |
| 53 |
6
|
fvresd |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 54 |
4 6
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑎 ) ∈ 𝐵 ) |
| 55 |
53 54
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑎 ) ∈ 𝐵 ) |
| 56 |
7
|
fvresd |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) = ( 𝐹 ‘ 𝑏 ) ) |
| 57 |
4 7
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑏 ) ∈ 𝐵 ) |
| 58 |
56 57
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑏 ) ∈ 𝐵 ) |
| 59 |
|
solin |
⊢ ( ( 𝑅 Or 𝐵 ∧ ( ( 𝐹 ‘ 𝑎 ) ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑏 ) ∨ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ∨ ( 𝐹 ‘ 𝑏 ) 𝑅 ( 𝐹 ‘ 𝑎 ) ) ) |
| 60 |
52 55 58 59
|
syl12anc |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑏 ) ∨ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ∨ ( 𝐹 ‘ 𝑏 ) 𝑅 ( 𝐹 ‘ 𝑎 ) ) ) |
| 61 |
11 47 50 60
|
mpjao3dan |
⊢ ( 𝜑 → ( 𝑎 𝑇 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑇 𝑎 ) ) |