Step |
Hyp |
Ref |
Expression |
1 |
|
fnwe2.su |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → 𝑆 = 𝑈 ) |
2 |
|
fnwe2.t |
⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑈 𝑦 ) ) } |
3 |
|
fnwe2.s |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑈 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) } ) |
4 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑈 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) } ) |
5 |
|
fveq2 |
⊢ ( 𝑎 = 𝑥 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑥 ) ) |
6 |
5
|
csbeq1d |
⊢ ( 𝑎 = 𝑥 → ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 = ⦋ ( 𝐹 ‘ 𝑥 ) / 𝑧 ⦌ 𝑆 ) |
7 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
8 |
7 1
|
csbie |
⊢ ⦋ ( 𝐹 ‘ 𝑥 ) / 𝑧 ⦌ 𝑆 = 𝑈 |
9 |
6 8
|
eqtrdi |
⊢ ( 𝑎 = 𝑥 → ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 = 𝑈 ) |
10 |
5
|
eqeq2d |
⊢ ( 𝑎 = 𝑥 → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
11 |
10
|
rabbidv |
⊢ ( 𝑎 = 𝑥 → { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } = { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) } ) |
12 |
9 11
|
weeq12d |
⊢ ( 𝑎 = 𝑥 → ( ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } ↔ 𝑈 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) } ) ) |
13 |
12
|
cbvralvw |
⊢ ( ∀ 𝑎 ∈ 𝐴 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } ↔ ∀ 𝑥 ∈ 𝐴 𝑈 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) } ) |
14 |
4 13
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐴 ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } ) |
15 |
14
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ⦋ ( 𝐹 ‘ 𝑎 ) / 𝑧 ⦌ 𝑆 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) } ) |