| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnwe2.su |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → 𝑆 = 𝑈 ) |
| 2 |
|
fnwe2.t |
⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑈 𝑦 ) ) } |
| 3 |
|
fnwe2.s |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑈 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) } ) |
| 4 |
|
fnwe2.f |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ) |
| 5 |
|
fnwe2.r |
⊢ ( 𝜑 → 𝑅 We 𝐵 ) |
| 6 |
|
fnwe2lem2.a |
⊢ ( 𝜑 → 𝑎 ⊆ 𝐴 ) |
| 7 |
|
fnwe2lem2.n0 |
⊢ ( 𝜑 → 𝑎 ≠ ∅ ) |
| 8 |
|
ffun |
⊢ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 → Fun ( 𝐹 ↾ 𝐴 ) ) |
| 9 |
|
vex |
⊢ 𝑎 ∈ V |
| 10 |
9
|
funimaex |
⊢ ( Fun ( 𝐹 ↾ 𝐴 ) → ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ∈ V ) |
| 11 |
4 8 10
|
3syl |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ∈ V ) |
| 12 |
|
wefr |
⊢ ( 𝑅 We 𝐵 → 𝑅 Fr 𝐵 ) |
| 13 |
5 12
|
syl |
⊢ ( 𝜑 → 𝑅 Fr 𝐵 ) |
| 14 |
|
imassrn |
⊢ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ⊆ ran ( 𝐹 ↾ 𝐴 ) |
| 15 |
4
|
frnd |
⊢ ( 𝜑 → ran ( 𝐹 ↾ 𝐴 ) ⊆ 𝐵 ) |
| 16 |
14 15
|
sstrid |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ⊆ 𝐵 ) |
| 17 |
|
incom |
⊢ ( dom ( 𝐹 ↾ 𝐴 ) ∩ 𝑎 ) = ( 𝑎 ∩ dom ( 𝐹 ↾ 𝐴 ) ) |
| 18 |
4
|
fdmd |
⊢ ( 𝜑 → dom ( 𝐹 ↾ 𝐴 ) = 𝐴 ) |
| 19 |
6 18
|
sseqtrrd |
⊢ ( 𝜑 → 𝑎 ⊆ dom ( 𝐹 ↾ 𝐴 ) ) |
| 20 |
|
dfss2 |
⊢ ( 𝑎 ⊆ dom ( 𝐹 ↾ 𝐴 ) ↔ ( 𝑎 ∩ dom ( 𝐹 ↾ 𝐴 ) ) = 𝑎 ) |
| 21 |
19 20
|
sylib |
⊢ ( 𝜑 → ( 𝑎 ∩ dom ( 𝐹 ↾ 𝐴 ) ) = 𝑎 ) |
| 22 |
17 21
|
eqtrid |
⊢ ( 𝜑 → ( dom ( 𝐹 ↾ 𝐴 ) ∩ 𝑎 ) = 𝑎 ) |
| 23 |
22 7
|
eqnetrd |
⊢ ( 𝜑 → ( dom ( 𝐹 ↾ 𝐴 ) ∩ 𝑎 ) ≠ ∅ ) |
| 24 |
|
imadisj |
⊢ ( ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) = ∅ ↔ ( dom ( 𝐹 ↾ 𝐴 ) ∩ 𝑎 ) = ∅ ) |
| 25 |
24
|
necon3bii |
⊢ ( ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ≠ ∅ ↔ ( dom ( 𝐹 ↾ 𝐴 ) ∩ 𝑎 ) ≠ ∅ ) |
| 26 |
23 25
|
sylibr |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ≠ ∅ ) |
| 27 |
|
fri |
⊢ ( ( ( ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ∈ V ∧ 𝑅 Fr 𝐵 ) ∧ ( ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ⊆ 𝐵 ∧ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ≠ ∅ ) ) → ∃ 𝑑 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 𝑑 ) |
| 28 |
11 13 16 26 27
|
syl22anc |
⊢ ( 𝜑 → ∃ 𝑑 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 𝑑 ) |
| 29 |
|
df-ima |
⊢ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) = ran ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) |
| 30 |
29
|
rexeqi |
⊢ ( ∃ 𝑑 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 𝑑 ↔ ∃ 𝑑 ∈ ran ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 𝑑 ) |
| 31 |
4
|
ffnd |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) Fn 𝐴 ) |
| 32 |
|
fnssres |
⊢ ( ( ( 𝐹 ↾ 𝐴 ) Fn 𝐴 ∧ 𝑎 ⊆ 𝐴 ) → ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) Fn 𝑎 ) |
| 33 |
31 6 32
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) Fn 𝑎 ) |
| 34 |
|
breq2 |
⊢ ( 𝑑 = ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) → ( 𝑒 𝑅 𝑑 ↔ 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ) ) |
| 35 |
34
|
notbid |
⊢ ( 𝑑 = ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) → ( ¬ 𝑒 𝑅 𝑑 ↔ ¬ 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ) ) |
| 36 |
35
|
ralbidv |
⊢ ( 𝑑 = ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) → ( ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 𝑑 ↔ ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ) ) |
| 37 |
36
|
rexrn |
⊢ ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) Fn 𝑎 → ( ∃ 𝑑 ∈ ran ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 𝑑 ↔ ∃ 𝑓 ∈ 𝑎 ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ) ) |
| 38 |
33 37
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑑 ∈ ran ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 𝑑 ↔ ∃ 𝑓 ∈ 𝑎 ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ) ) |
| 39 |
30 38
|
bitrid |
⊢ ( 𝜑 → ( ∃ 𝑑 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 𝑑 ↔ ∃ 𝑓 ∈ 𝑎 ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ) ) |
| 40 |
29
|
raleqi |
⊢ ( ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ↔ ∀ 𝑒 ∈ ran ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ¬ 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ) |
| 41 |
|
breq1 |
⊢ ( 𝑒 = ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑑 ) → ( 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ↔ ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑑 ) 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ) ) |
| 42 |
41
|
notbid |
⊢ ( 𝑒 = ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑑 ) → ( ¬ 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ↔ ¬ ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑑 ) 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ) ) |
| 43 |
42
|
ralrn |
⊢ ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) Fn 𝑎 → ( ∀ 𝑒 ∈ ran ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ¬ 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ↔ ∀ 𝑑 ∈ 𝑎 ¬ ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑑 ) 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ) ) |
| 44 |
33 43
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑒 ∈ ran ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ¬ 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ↔ ∀ 𝑑 ∈ 𝑎 ¬ ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑑 ) 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ) ) |
| 45 |
40 44
|
bitrid |
⊢ ( 𝜑 → ( ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ↔ ∀ 𝑑 ∈ 𝑎 ¬ ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑑 ) 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ) ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑎 ) → ( ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ↔ ∀ 𝑑 ∈ 𝑎 ¬ ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑑 ) 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ) ) |
| 47 |
6
|
resabs1d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) = ( 𝐹 ↾ 𝑎 ) ) |
| 48 |
47
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑎 ) ∧ 𝑑 ∈ 𝑎 ) → ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) = ( 𝐹 ↾ 𝑎 ) ) |
| 49 |
48
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑎 ) ∧ 𝑑 ∈ 𝑎 ) → ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑑 ) = ( ( 𝐹 ↾ 𝑎 ) ‘ 𝑑 ) ) |
| 50 |
|
fvres |
⊢ ( 𝑑 ∈ 𝑎 → ( ( 𝐹 ↾ 𝑎 ) ‘ 𝑑 ) = ( 𝐹 ‘ 𝑑 ) ) |
| 51 |
50
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑎 ) ∧ 𝑑 ∈ 𝑎 ) → ( ( 𝐹 ↾ 𝑎 ) ‘ 𝑑 ) = ( 𝐹 ‘ 𝑑 ) ) |
| 52 |
49 51
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑎 ) ∧ 𝑑 ∈ 𝑎 ) → ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑑 ) = ( 𝐹 ‘ 𝑑 ) ) |
| 53 |
48
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑎 ) ∧ 𝑑 ∈ 𝑎 ) → ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) = ( ( 𝐹 ↾ 𝑎 ) ‘ 𝑓 ) ) |
| 54 |
|
fvres |
⊢ ( 𝑓 ∈ 𝑎 → ( ( 𝐹 ↾ 𝑎 ) ‘ 𝑓 ) = ( 𝐹 ‘ 𝑓 ) ) |
| 55 |
54
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑎 ) ∧ 𝑑 ∈ 𝑎 ) → ( ( 𝐹 ↾ 𝑎 ) ‘ 𝑓 ) = ( 𝐹 ‘ 𝑓 ) ) |
| 56 |
53 55
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑎 ) ∧ 𝑑 ∈ 𝑎 ) → ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) = ( 𝐹 ‘ 𝑓 ) ) |
| 57 |
52 56
|
breq12d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑎 ) ∧ 𝑑 ∈ 𝑎 ) → ( ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑑 ) 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ↔ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) |
| 58 |
57
|
notbid |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑎 ) ∧ 𝑑 ∈ 𝑎 ) → ( ¬ ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑑 ) 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ↔ ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) |
| 59 |
58
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑎 ) → ( ∀ 𝑑 ∈ 𝑎 ¬ ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑑 ) 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ↔ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) |
| 60 |
46 59
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑎 ) → ( ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ↔ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) |
| 61 |
60
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑓 ∈ 𝑎 ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑎 ) ‘ 𝑓 ) ↔ ∃ 𝑓 ∈ 𝑎 ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) |
| 62 |
39 61
|
bitrd |
⊢ ( 𝜑 → ( ∃ 𝑑 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 𝑑 ↔ ∃ 𝑓 ∈ 𝑎 ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) |
| 63 |
9
|
inex1 |
⊢ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ∈ V |
| 64 |
63
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) → ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ∈ V ) |
| 65 |
6
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑎 ) → 𝑓 ∈ 𝐴 ) |
| 66 |
1 2 3
|
fnwe2lem1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) |
| 67 |
|
wefr |
⊢ ( ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 We { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } → ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 Fr { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) |
| 68 |
66 67
|
syl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 Fr { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) |
| 69 |
65 68
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑎 ) → ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 Fr { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) |
| 70 |
69
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) → ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 Fr { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) |
| 71 |
|
inss2 |
⊢ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ⊆ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } |
| 72 |
71
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) → ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ⊆ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) |
| 73 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) → 𝑓 ∈ 𝑎 ) |
| 74 |
|
fveqeq2 |
⊢ ( 𝑦 = 𝑓 → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) ↔ ( 𝐹 ‘ 𝑓 ) = ( 𝐹 ‘ 𝑓 ) ) ) |
| 75 |
65
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) → 𝑓 ∈ 𝐴 ) |
| 76 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) → ( 𝐹 ‘ 𝑓 ) = ( 𝐹 ‘ 𝑓 ) ) |
| 77 |
74 75 76
|
elrabd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) → 𝑓 ∈ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) |
| 78 |
73 77
|
elind |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) → 𝑓 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ) |
| 79 |
78
|
ne0d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) → ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ≠ ∅ ) |
| 80 |
|
fri |
⊢ ( ( ( ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ∈ V ∧ ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 Fr { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ∧ ( ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ⊆ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ∧ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ≠ ∅ ) ) → ∃ 𝑒 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ∀ 𝑔 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) |
| 81 |
64 70 72 79 80
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) → ∃ 𝑒 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ∀ 𝑔 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) |
| 82 |
|
elin |
⊢ ( 𝑒 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ↔ ( 𝑒 ∈ 𝑎 ∧ 𝑒 ∈ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ) |
| 83 |
|
fveqeq2 |
⊢ ( 𝑦 = 𝑒 → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) ↔ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) |
| 84 |
83
|
elrab |
⊢ ( 𝑒 ∈ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ↔ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) |
| 85 |
84
|
anbi2i |
⊢ ( ( 𝑒 ∈ 𝑎 ∧ 𝑒 ∈ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ↔ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 86 |
82 85
|
bitri |
⊢ ( 𝑒 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ↔ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 87 |
|
elin |
⊢ ( 𝑔 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ↔ ( 𝑔 ∈ 𝑎 ∧ 𝑔 ∈ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ) |
| 88 |
|
fveqeq2 |
⊢ ( 𝑦 = 𝑔 → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) ↔ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) ) |
| 89 |
88
|
elrab |
⊢ ( 𝑔 ∈ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ↔ ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) ) |
| 90 |
89
|
anbi2i |
⊢ ( ( 𝑔 ∈ 𝑎 ∧ 𝑔 ∈ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ↔ ( 𝑔 ∈ 𝑎 ∧ ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 91 |
87 90
|
bitri |
⊢ ( 𝑔 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ↔ ( 𝑔 ∈ 𝑎 ∧ ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 92 |
91
|
imbi1i |
⊢ ( ( 𝑔 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ↔ ( ( 𝑔 ∈ 𝑎 ∧ ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) |
| 93 |
|
impexp |
⊢ ( ( ( 𝑔 ∈ 𝑎 ∧ ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ↔ ( 𝑔 ∈ 𝑎 → ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ) |
| 94 |
92 93
|
bitri |
⊢ ( ( 𝑔 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ↔ ( 𝑔 ∈ 𝑎 → ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ) |
| 95 |
94
|
ralbii2 |
⊢ ( ∀ 𝑔 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ↔ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) |
| 96 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) → 𝑒 ∈ 𝑎 ) |
| 97 |
|
fveq2 |
⊢ ( 𝑑 = 𝑐 → ( 𝐹 ‘ 𝑑 ) = ( 𝐹 ‘ 𝑐 ) ) |
| 98 |
97
|
breq1d |
⊢ ( 𝑑 = 𝑐 → ( ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ↔ ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) |
| 99 |
98
|
notbid |
⊢ ( 𝑑 = 𝑐 → ( ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ↔ ¬ ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) |
| 100 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) → ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) |
| 101 |
100
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ 𝑐 ∈ 𝑎 ) → ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) |
| 102 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ 𝑐 ∈ 𝑎 ) → 𝑐 ∈ 𝑎 ) |
| 103 |
99 101 102
|
rspcdva |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ 𝑐 ∈ 𝑎 ) → ¬ ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) |
| 104 |
|
simprrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) → ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) |
| 105 |
104
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ 𝑐 ∈ 𝑎 ) → ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) |
| 106 |
105
|
breq2d |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ 𝑐 ∈ 𝑎 ) → ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑒 ) ↔ ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) |
| 107 |
103 106
|
mtbird |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ 𝑐 ∈ 𝑎 ) → ¬ ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑒 ) ) |
| 108 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) → 𝑎 ⊆ 𝐴 ) |
| 109 |
108
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ 𝑐 ∈ 𝑎 ) → 𝑐 ∈ 𝐴 ) |
| 110 |
109
|
adantrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ ( 𝑐 ∈ 𝑎 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ) ) → 𝑐 ∈ 𝐴 ) |
| 111 |
|
simprr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ ( 𝑐 ∈ 𝑎 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ) ) → ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ) |
| 112 |
104
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ ( 𝑐 ∈ 𝑎 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ) ) → ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) |
| 113 |
111 112
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ ( 𝑐 ∈ 𝑎 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ) ) → ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑓 ) ) |
| 114 |
|
eleq1w |
⊢ ( 𝑔 = 𝑐 → ( 𝑔 ∈ 𝐴 ↔ 𝑐 ∈ 𝐴 ) ) |
| 115 |
|
fveqeq2 |
⊢ ( 𝑔 = 𝑐 → ( ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ↔ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑓 ) ) ) |
| 116 |
114 115
|
anbi12d |
⊢ ( 𝑔 = 𝑐 → ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) ↔ ( 𝑐 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 117 |
|
breq1 |
⊢ ( 𝑔 = 𝑐 → ( 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ↔ 𝑐 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) |
| 118 |
117
|
notbid |
⊢ ( 𝑔 = 𝑐 → ( ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ↔ ¬ 𝑐 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) |
| 119 |
116 118
|
imbi12d |
⊢ ( 𝑔 = 𝑐 → ( ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ↔ ( ( 𝑐 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑐 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ) |
| 120 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ ( 𝑐 ∈ 𝑎 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ) ) → ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) |
| 121 |
|
simprl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ ( 𝑐 ∈ 𝑎 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ) ) → 𝑐 ∈ 𝑎 ) |
| 122 |
119 120 121
|
rspcdva |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ ( 𝑐 ∈ 𝑎 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ) ) → ( ( 𝑐 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑐 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) |
| 123 |
110 113 122
|
mp2and |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ ( 𝑐 ∈ 𝑎 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ) ) → ¬ 𝑐 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) |
| 124 |
111 112
|
eqtr2d |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ ( 𝑐 ∈ 𝑎 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ) ) → ( 𝐹 ‘ 𝑓 ) = ( 𝐹 ‘ 𝑐 ) ) |
| 125 |
124
|
csbeq1d |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ ( 𝑐 ∈ 𝑎 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ) ) → ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 = ⦋ ( 𝐹 ‘ 𝑐 ) / 𝑧 ⦌ 𝑆 ) |
| 126 |
125
|
breqd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ ( 𝑐 ∈ 𝑎 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ) ) → ( 𝑐 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ↔ 𝑐 ⦋ ( 𝐹 ‘ 𝑐 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) |
| 127 |
123 126
|
mtbid |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ ( 𝑐 ∈ 𝑎 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ) ) → ¬ 𝑐 ⦋ ( 𝐹 ‘ 𝑐 ) / 𝑧 ⦌ 𝑆 𝑒 ) |
| 128 |
127
|
expr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ 𝑐 ∈ 𝑎 ) → ( ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) → ¬ 𝑐 ⦋ ( 𝐹 ‘ 𝑐 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) |
| 129 |
|
imnan |
⊢ ( ( ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) → ¬ 𝑐 ⦋ ( 𝐹 ‘ 𝑐 ) / 𝑧 ⦌ 𝑆 𝑒 ) ↔ ¬ ( ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ∧ 𝑐 ⦋ ( 𝐹 ‘ 𝑐 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) |
| 130 |
128 129
|
sylib |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ 𝑐 ∈ 𝑎 ) → ¬ ( ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ∧ 𝑐 ⦋ ( 𝐹 ‘ 𝑐 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) |
| 131 |
|
ioran |
⊢ ( ¬ ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑒 ) ∨ ( ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ∧ 𝑐 ⦋ ( 𝐹 ‘ 𝑐 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ↔ ( ¬ ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑒 ) ∧ ¬ ( ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ∧ 𝑐 ⦋ ( 𝐹 ‘ 𝑐 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ) |
| 132 |
107 130 131
|
sylanbrc |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ 𝑐 ∈ 𝑎 ) → ¬ ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑒 ) ∨ ( ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ∧ 𝑐 ⦋ ( 𝐹 ‘ 𝑐 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ) |
| 133 |
1 2
|
fnwe2val |
⊢ ( 𝑐 𝑇 𝑒 ↔ ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑒 ) ∨ ( ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑒 ) ∧ 𝑐 ⦋ ( 𝐹 ‘ 𝑐 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ) |
| 134 |
132 133
|
sylnibr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) ∧ 𝑐 ∈ 𝑎 ) → ¬ 𝑐 𝑇 𝑒 ) |
| 135 |
134
|
ralrimiva |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) → ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑒 ) |
| 136 |
|
breq2 |
⊢ ( 𝑏 = 𝑒 → ( 𝑐 𝑇 𝑏 ↔ 𝑐 𝑇 𝑒 ) ) |
| 137 |
136
|
notbid |
⊢ ( 𝑏 = 𝑒 → ( ¬ 𝑐 𝑇 𝑏 ↔ ¬ 𝑐 𝑇 𝑒 ) ) |
| 138 |
137
|
ralbidv |
⊢ ( 𝑏 = 𝑒 → ( ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑏 ↔ ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑒 ) ) |
| 139 |
138
|
rspcev |
⊢ ( ( 𝑒 ∈ 𝑎 ∧ ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑒 ) → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑏 ) |
| 140 |
96 135 139
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) ∧ ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) ) → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑏 ) |
| 141 |
140
|
ex |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) → ( ∀ 𝑔 ∈ 𝑎 ( ( 𝑔 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑔 ) = ( 𝐹 ‘ 𝑓 ) ) → ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 ) → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑏 ) ) |
| 142 |
95 141
|
biimtrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) ∧ ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) ) → ( ∀ 𝑔 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑏 ) ) |
| 143 |
142
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) → ( ( 𝑒 ∈ 𝑎 ∧ ( 𝑒 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑓 ) ) ) → ( ∀ 𝑔 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑏 ) ) ) |
| 144 |
86 143
|
biimtrid |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) → ( 𝑒 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) → ( ∀ 𝑔 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑏 ) ) ) |
| 145 |
144
|
rexlimdv |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) → ( ∃ 𝑒 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ∀ 𝑔 ∈ ( 𝑎 ∩ { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑓 ) } ) ¬ 𝑔 ⦋ ( 𝐹 ‘ 𝑓 ) / 𝑧 ⦌ 𝑆 𝑒 → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑏 ) ) |
| 146 |
81 145
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑎 ∧ ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) ) ) → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑏 ) |
| 147 |
146
|
rexlimdvaa |
⊢ ( 𝜑 → ( ∃ 𝑓 ∈ 𝑎 ∀ 𝑑 ∈ 𝑎 ¬ ( 𝐹 ‘ 𝑑 ) 𝑅 ( 𝐹 ‘ 𝑓 ) → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑏 ) ) |
| 148 |
62 147
|
sylbid |
⊢ ( 𝜑 → ( ∃ 𝑑 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ∀ 𝑒 ∈ ( ( 𝐹 ↾ 𝐴 ) “ 𝑎 ) ¬ 𝑒 𝑅 𝑑 → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑏 ) ) |
| 149 |
28 148
|
mpd |
⊢ ( 𝜑 → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑇 𝑏 ) |