| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnwe2.su |
|- ( z = ( F ` x ) -> S = U ) |
| 2 |
|
fnwe2.t |
|- T = { <. x , y >. | ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x U y ) ) } |
| 3 |
|
fnwe2.s |
|- ( ( ph /\ x e. A ) -> U We { y e. A | ( F ` y ) = ( F ` x ) } ) |
| 4 |
3
|
ralrimiva |
|- ( ph -> A. x e. A U We { y e. A | ( F ` y ) = ( F ` x ) } ) |
| 5 |
|
fveq2 |
|- ( a = x -> ( F ` a ) = ( F ` x ) ) |
| 6 |
5
|
csbeq1d |
|- ( a = x -> [_ ( F ` a ) / z ]_ S = [_ ( F ` x ) / z ]_ S ) |
| 7 |
|
fvex |
|- ( F ` x ) e. _V |
| 8 |
7 1
|
csbie |
|- [_ ( F ` x ) / z ]_ S = U |
| 9 |
6 8
|
eqtrdi |
|- ( a = x -> [_ ( F ` a ) / z ]_ S = U ) |
| 10 |
5
|
eqeq2d |
|- ( a = x -> ( ( F ` y ) = ( F ` a ) <-> ( F ` y ) = ( F ` x ) ) ) |
| 11 |
10
|
rabbidv |
|- ( a = x -> { y e. A | ( F ` y ) = ( F ` a ) } = { y e. A | ( F ` y ) = ( F ` x ) } ) |
| 12 |
9 11
|
weeq12d |
|- ( a = x -> ( [_ ( F ` a ) / z ]_ S We { y e. A | ( F ` y ) = ( F ` a ) } <-> U We { y e. A | ( F ` y ) = ( F ` x ) } ) ) |
| 13 |
12
|
cbvralvw |
|- ( A. a e. A [_ ( F ` a ) / z ]_ S We { y e. A | ( F ` y ) = ( F ` a ) } <-> A. x e. A U We { y e. A | ( F ` y ) = ( F ` x ) } ) |
| 14 |
4 13
|
sylibr |
|- ( ph -> A. a e. A [_ ( F ` a ) / z ]_ S We { y e. A | ( F ` y ) = ( F ` a ) } ) |
| 15 |
14
|
r19.21bi |
|- ( ( ph /\ a e. A ) -> [_ ( F ` a ) / z ]_ S We { y e. A | ( F ` y ) = ( F ` a ) } ) |