| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coiun |
|- ( `' ( 2nd |` ( _V X. _V ) ) o. U_ y e. B ( ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) X. ( G " { y } ) ) ) = U_ y e. B ( `' ( 2nd |` ( _V X. _V ) ) o. ( ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) X. ( G " { y } ) ) ) |
| 2 |
|
inss1 |
|- ( dom G i^i ran ( 2nd |` ( _V X. _V ) ) ) C_ dom G |
| 3 |
|
fndm |
|- ( G Fn B -> dom G = B ) |
| 4 |
2 3
|
sseqtrid |
|- ( G Fn B -> ( dom G i^i ran ( 2nd |` ( _V X. _V ) ) ) C_ B ) |
| 5 |
|
dfco2a |
|- ( ( dom G i^i ran ( 2nd |` ( _V X. _V ) ) ) C_ B -> ( G o. ( 2nd |` ( _V X. _V ) ) ) = U_ y e. B ( ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) X. ( G " { y } ) ) ) |
| 6 |
4 5
|
syl |
|- ( G Fn B -> ( G o. ( 2nd |` ( _V X. _V ) ) ) = U_ y e. B ( ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) X. ( G " { y } ) ) ) |
| 7 |
6
|
coeq2d |
|- ( G Fn B -> ( `' ( 2nd |` ( _V X. _V ) ) o. ( G o. ( 2nd |` ( _V X. _V ) ) ) ) = ( `' ( 2nd |` ( _V X. _V ) ) o. U_ y e. B ( ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) X. ( G " { y } ) ) ) ) |
| 8 |
|
inss1 |
|- ( dom ( { ( G ` y ) } X. ( _V X. { y } ) ) i^i ran ( 2nd |` ( _V X. _V ) ) ) C_ dom ( { ( G ` y ) } X. ( _V X. { y } ) ) |
| 9 |
|
dmxpss |
|- dom ( { ( G ` y ) } X. ( _V X. { y } ) ) C_ { ( G ` y ) } |
| 10 |
8 9
|
sstri |
|- ( dom ( { ( G ` y ) } X. ( _V X. { y } ) ) i^i ran ( 2nd |` ( _V X. _V ) ) ) C_ { ( G ` y ) } |
| 11 |
|
dfco2a |
|- ( ( dom ( { ( G ` y ) } X. ( _V X. { y } ) ) i^i ran ( 2nd |` ( _V X. _V ) ) ) C_ { ( G ` y ) } -> ( ( { ( G ` y ) } X. ( _V X. { y } ) ) o. ( 2nd |` ( _V X. _V ) ) ) = U_ x e. { ( G ` y ) } ( ( `' ( 2nd |` ( _V X. _V ) ) " { x } ) X. ( ( { ( G ` y ) } X. ( _V X. { y } ) ) " { x } ) ) ) |
| 12 |
10 11
|
ax-mp |
|- ( ( { ( G ` y ) } X. ( _V X. { y } ) ) o. ( 2nd |` ( _V X. _V ) ) ) = U_ x e. { ( G ` y ) } ( ( `' ( 2nd |` ( _V X. _V ) ) " { x } ) X. ( ( { ( G ` y ) } X. ( _V X. { y } ) ) " { x } ) ) |
| 13 |
|
fvex |
|- ( G ` y ) e. _V |
| 14 |
|
fparlem2 |
|- ( `' ( 2nd |` ( _V X. _V ) ) " { x } ) = ( _V X. { x } ) |
| 15 |
|
sneq |
|- ( x = ( G ` y ) -> { x } = { ( G ` y ) } ) |
| 16 |
15
|
xpeq2d |
|- ( x = ( G ` y ) -> ( _V X. { x } ) = ( _V X. { ( G ` y ) } ) ) |
| 17 |
14 16
|
eqtrid |
|- ( x = ( G ` y ) -> ( `' ( 2nd |` ( _V X. _V ) ) " { x } ) = ( _V X. { ( G ` y ) } ) ) |
| 18 |
15
|
imaeq2d |
|- ( x = ( G ` y ) -> ( ( { ( G ` y ) } X. ( _V X. { y } ) ) " { x } ) = ( ( { ( G ` y ) } X. ( _V X. { y } ) ) " { ( G ` y ) } ) ) |
| 19 |
|
df-ima |
|- ( ( { ( G ` y ) } X. ( _V X. { y } ) ) " { ( G ` y ) } ) = ran ( ( { ( G ` y ) } X. ( _V X. { y } ) ) |` { ( G ` y ) } ) |
| 20 |
|
ssid |
|- { ( G ` y ) } C_ { ( G ` y ) } |
| 21 |
|
xpssres |
|- ( { ( G ` y ) } C_ { ( G ` y ) } -> ( ( { ( G ` y ) } X. ( _V X. { y } ) ) |` { ( G ` y ) } ) = ( { ( G ` y ) } X. ( _V X. { y } ) ) ) |
| 22 |
20 21
|
ax-mp |
|- ( ( { ( G ` y ) } X. ( _V X. { y } ) ) |` { ( G ` y ) } ) = ( { ( G ` y ) } X. ( _V X. { y } ) ) |
| 23 |
22
|
rneqi |
|- ran ( ( { ( G ` y ) } X. ( _V X. { y } ) ) |` { ( G ` y ) } ) = ran ( { ( G ` y ) } X. ( _V X. { y } ) ) |
| 24 |
13
|
snnz |
|- { ( G ` y ) } =/= (/) |
| 25 |
|
rnxp |
|- ( { ( G ` y ) } =/= (/) -> ran ( { ( G ` y ) } X. ( _V X. { y } ) ) = ( _V X. { y } ) ) |
| 26 |
24 25
|
ax-mp |
|- ran ( { ( G ` y ) } X. ( _V X. { y } ) ) = ( _V X. { y } ) |
| 27 |
23 26
|
eqtri |
|- ran ( ( { ( G ` y ) } X. ( _V X. { y } ) ) |` { ( G ` y ) } ) = ( _V X. { y } ) |
| 28 |
19 27
|
eqtri |
|- ( ( { ( G ` y ) } X. ( _V X. { y } ) ) " { ( G ` y ) } ) = ( _V X. { y } ) |
| 29 |
18 28
|
eqtrdi |
|- ( x = ( G ` y ) -> ( ( { ( G ` y ) } X. ( _V X. { y } ) ) " { x } ) = ( _V X. { y } ) ) |
| 30 |
17 29
|
xpeq12d |
|- ( x = ( G ` y ) -> ( ( `' ( 2nd |` ( _V X. _V ) ) " { x } ) X. ( ( { ( G ` y ) } X. ( _V X. { y } ) ) " { x } ) ) = ( ( _V X. { ( G ` y ) } ) X. ( _V X. { y } ) ) ) |
| 31 |
13 30
|
iunxsn |
|- U_ x e. { ( G ` y ) } ( ( `' ( 2nd |` ( _V X. _V ) ) " { x } ) X. ( ( { ( G ` y ) } X. ( _V X. { y } ) ) " { x } ) ) = ( ( _V X. { ( G ` y ) } ) X. ( _V X. { y } ) ) |
| 32 |
12 31
|
eqtri |
|- ( ( { ( G ` y ) } X. ( _V X. { y } ) ) o. ( 2nd |` ( _V X. _V ) ) ) = ( ( _V X. { ( G ` y ) } ) X. ( _V X. { y } ) ) |
| 33 |
32
|
cnveqi |
|- `' ( ( { ( G ` y ) } X. ( _V X. { y } ) ) o. ( 2nd |` ( _V X. _V ) ) ) = `' ( ( _V X. { ( G ` y ) } ) X. ( _V X. { y } ) ) |
| 34 |
|
cnvco |
|- `' ( ( { ( G ` y ) } X. ( _V X. { y } ) ) o. ( 2nd |` ( _V X. _V ) ) ) = ( `' ( 2nd |` ( _V X. _V ) ) o. `' ( { ( G ` y ) } X. ( _V X. { y } ) ) ) |
| 35 |
|
cnvxp |
|- `' ( ( _V X. { ( G ` y ) } ) X. ( _V X. { y } ) ) = ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) |
| 36 |
33 34 35
|
3eqtr3i |
|- ( `' ( 2nd |` ( _V X. _V ) ) o. `' ( { ( G ` y ) } X. ( _V X. { y } ) ) ) = ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) |
| 37 |
|
fparlem2 |
|- ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) = ( _V X. { y } ) |
| 38 |
37
|
xpeq2i |
|- ( { ( G ` y ) } X. ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) ) = ( { ( G ` y ) } X. ( _V X. { y } ) ) |
| 39 |
|
fnsnfv |
|- ( ( G Fn B /\ y e. B ) -> { ( G ` y ) } = ( G " { y } ) ) |
| 40 |
39
|
xpeq1d |
|- ( ( G Fn B /\ y e. B ) -> ( { ( G ` y ) } X. ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) ) = ( ( G " { y } ) X. ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) ) ) |
| 41 |
38 40
|
eqtr3id |
|- ( ( G Fn B /\ y e. B ) -> ( { ( G ` y ) } X. ( _V X. { y } ) ) = ( ( G " { y } ) X. ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) ) ) |
| 42 |
41
|
cnveqd |
|- ( ( G Fn B /\ y e. B ) -> `' ( { ( G ` y ) } X. ( _V X. { y } ) ) = `' ( ( G " { y } ) X. ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) ) ) |
| 43 |
|
cnvxp |
|- `' ( ( G " { y } ) X. ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) ) = ( ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) X. ( G " { y } ) ) |
| 44 |
42 43
|
eqtrdi |
|- ( ( G Fn B /\ y e. B ) -> `' ( { ( G ` y ) } X. ( _V X. { y } ) ) = ( ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) X. ( G " { y } ) ) ) |
| 45 |
44
|
coeq2d |
|- ( ( G Fn B /\ y e. B ) -> ( `' ( 2nd |` ( _V X. _V ) ) o. `' ( { ( G ` y ) } X. ( _V X. { y } ) ) ) = ( `' ( 2nd |` ( _V X. _V ) ) o. ( ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) X. ( G " { y } ) ) ) ) |
| 46 |
36 45
|
eqtr3id |
|- ( ( G Fn B /\ y e. B ) -> ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) = ( `' ( 2nd |` ( _V X. _V ) ) o. ( ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) X. ( G " { y } ) ) ) ) |
| 47 |
46
|
iuneq2dv |
|- ( G Fn B -> U_ y e. B ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) = U_ y e. B ( `' ( 2nd |` ( _V X. _V ) ) o. ( ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) X. ( G " { y } ) ) ) ) |
| 48 |
1 7 47
|
3eqtr4a |
|- ( G Fn B -> ( `' ( 2nd |` ( _V X. _V ) ) o. ( G o. ( 2nd |` ( _V X. _V ) ) ) ) = U_ y e. B ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) ) |