Step |
Hyp |
Ref |
Expression |
1 |
|
fpwwe2.1 |
|- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
2 |
|
fpwwe2.2 |
|- ( ph -> A e. V ) |
3 |
|
fpwwe2.3 |
|- ( ( ph /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A ) |
4 |
2
|
adantr |
|- ( ( ph /\ ( X C_ A /\ R C_ ( X X. X ) /\ R We X ) ) -> A e. V ) |
5 |
|
simpr1 |
|- ( ( ph /\ ( X C_ A /\ R C_ ( X X. X ) /\ R We X ) ) -> X C_ A ) |
6 |
4 5
|
ssexd |
|- ( ( ph /\ ( X C_ A /\ R C_ ( X X. X ) /\ R We X ) ) -> X e. _V ) |
7 |
6 6
|
xpexd |
|- ( ( ph /\ ( X C_ A /\ R C_ ( X X. X ) /\ R We X ) ) -> ( X X. X ) e. _V ) |
8 |
|
simpr2 |
|- ( ( ph /\ ( X C_ A /\ R C_ ( X X. X ) /\ R We X ) ) -> R C_ ( X X. X ) ) |
9 |
7 8
|
ssexd |
|- ( ( ph /\ ( X C_ A /\ R C_ ( X X. X ) /\ R We X ) ) -> R e. _V ) |
10 |
|
simpl |
|- ( ( x = X /\ r = R ) -> x = X ) |
11 |
10
|
sseq1d |
|- ( ( x = X /\ r = R ) -> ( x C_ A <-> X C_ A ) ) |
12 |
|
simpr |
|- ( ( x = X /\ r = R ) -> r = R ) |
13 |
10
|
sqxpeqd |
|- ( ( x = X /\ r = R ) -> ( x X. x ) = ( X X. X ) ) |
14 |
12 13
|
sseq12d |
|- ( ( x = X /\ r = R ) -> ( r C_ ( x X. x ) <-> R C_ ( X X. X ) ) ) |
15 |
12 10
|
weeq12d |
|- ( ( x = X /\ r = R ) -> ( r We x <-> R We X ) ) |
16 |
11 14 15
|
3anbi123d |
|- ( ( x = X /\ r = R ) -> ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) <-> ( X C_ A /\ R C_ ( X X. X ) /\ R We X ) ) ) |
17 |
|
oveq12 |
|- ( ( x = X /\ r = R ) -> ( x F r ) = ( X F R ) ) |
18 |
17
|
eleq1d |
|- ( ( x = X /\ r = R ) -> ( ( x F r ) e. A <-> ( X F R ) e. A ) ) |
19 |
16 18
|
imbi12d |
|- ( ( x = X /\ r = R ) -> ( ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) -> ( x F r ) e. A ) <-> ( ( X C_ A /\ R C_ ( X X. X ) /\ R We X ) -> ( X F R ) e. A ) ) ) |
20 |
3
|
ex |
|- ( ph -> ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) -> ( x F r ) e. A ) ) |
21 |
20
|
adantr |
|- ( ( ph /\ ( X C_ A /\ R C_ ( X X. X ) /\ R We X ) ) -> ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) -> ( x F r ) e. A ) ) |
22 |
6 9 19 21
|
vtocl2d |
|- ( ( ph /\ ( X C_ A /\ R C_ ( X X. X ) /\ R We X ) ) -> ( ( X C_ A /\ R C_ ( X X. X ) /\ R We X ) -> ( X F R ) e. A ) ) |
23 |
22
|
syldbl2 |
|- ( ( ph /\ ( X C_ A /\ R C_ ( X X. X ) /\ R We X ) ) -> ( X F R ) e. A ) |