Metamath Proof Explorer


Theorem frrlem11

Description: Lemma for well-founded recursion. For the next several theorems we will be aiming to prove that dom F = A . To do this, we set up a function C that supposedly contains an element of A that is not in dom F and we show that the element must be in dom F . Our choice of what to restrict F to depends on if we assume partial orders or the axiom of infinity. To begin with, we establish the functionality of C . (Contributed by Scott Fenton, 7-Dec-2022)

Ref Expression
Hypotheses frrlem11.1
|- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) }
frrlem11.2
|- F = frecs ( R , A , G )
frrlem11.3
|- ( ( ph /\ ( g e. B /\ h e. B ) ) -> ( ( x g u /\ x h v ) -> u = v ) )
frrlem11.4
|- C = ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } )
Assertion frrlem11
|- ( ( ph /\ z e. ( A \ dom F ) ) -> C Fn ( ( S i^i dom F ) u. { z } ) )

Proof

Step Hyp Ref Expression
1 frrlem11.1
 |-  B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) }
2 frrlem11.2
 |-  F = frecs ( R , A , G )
3 frrlem11.3
 |-  ( ( ph /\ ( g e. B /\ h e. B ) ) -> ( ( x g u /\ x h v ) -> u = v ) )
4 frrlem11.4
 |-  C = ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } )
5 1 2 3 frrlem9
 |-  ( ph -> Fun F )
6 5 funresd
 |-  ( ph -> Fun ( F |` S ) )
7 dmres
 |-  dom ( F |` S ) = ( S i^i dom F )
8 df-fn
 |-  ( ( F |` S ) Fn ( S i^i dom F ) <-> ( Fun ( F |` S ) /\ dom ( F |` S ) = ( S i^i dom F ) ) )
9 7 8 mpbiran2
 |-  ( ( F |` S ) Fn ( S i^i dom F ) <-> Fun ( F |` S ) )
10 6 9 sylibr
 |-  ( ph -> ( F |` S ) Fn ( S i^i dom F ) )
11 vex
 |-  z e. _V
12 ovex
 |-  ( z G ( F |` Pred ( R , A , z ) ) ) e. _V
13 11 12 fnsn
 |-  { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } Fn { z }
14 10 13 jctir
 |-  ( ph -> ( ( F |` S ) Fn ( S i^i dom F ) /\ { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } Fn { z } ) )
15 eldifn
 |-  ( z e. ( A \ dom F ) -> -. z e. dom F )
16 elinel2
 |-  ( z e. ( S i^i dom F ) -> z e. dom F )
17 15 16 nsyl
 |-  ( z e. ( A \ dom F ) -> -. z e. ( S i^i dom F ) )
18 disjsn
 |-  ( ( ( S i^i dom F ) i^i { z } ) = (/) <-> -. z e. ( S i^i dom F ) )
19 17 18 sylibr
 |-  ( z e. ( A \ dom F ) -> ( ( S i^i dom F ) i^i { z } ) = (/) )
20 fnun
 |-  ( ( ( ( F |` S ) Fn ( S i^i dom F ) /\ { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } Fn { z } ) /\ ( ( S i^i dom F ) i^i { z } ) = (/) ) -> ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) Fn ( ( S i^i dom F ) u. { z } ) )
21 14 19 20 syl2an
 |-  ( ( ph /\ z e. ( A \ dom F ) ) -> ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) Fn ( ( S i^i dom F ) u. { z } ) )
22 4 fneq1i
 |-  ( C Fn ( ( S i^i dom F ) u. { z } ) <-> ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) Fn ( ( S i^i dom F ) u. { z } ) )
23 21 22 sylibr
 |-  ( ( ph /\ z e. ( A \ dom F ) ) -> C Fn ( ( S i^i dom F ) u. { z } ) )