Metamath Proof Explorer


Theorem frrlem11

Description: Lemma for founded recursion. For the next several theorems we will be aiming to prove that dom F = A . To do this, we set up a function C that supposedly contains an element of A that is not in dom F and we show that the element must be in dom F . Our choice of what to restrict F to depends on if we assume partial ordering or Infinity. To begin with, we establish the functionhood of C . (Contributed by Scott Fenton, 7-Dec-2022)

Ref Expression
Hypotheses frrlem11.1
|- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) }
frrlem11.2
|- F = frecs ( R , A , G )
frrlem11.3
|- ( ( ph /\ ( g e. B /\ h e. B ) ) -> ( ( x g u /\ x h v ) -> u = v ) )
frrlem11.4
|- C = ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } )
Assertion frrlem11
|- ( ( ph /\ z e. ( A \ dom F ) ) -> C Fn ( ( S i^i dom F ) u. { z } ) )

Proof

Step Hyp Ref Expression
1 frrlem11.1
 |-  B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) }
2 frrlem11.2
 |-  F = frecs ( R , A , G )
3 frrlem11.3
 |-  ( ( ph /\ ( g e. B /\ h e. B ) ) -> ( ( x g u /\ x h v ) -> u = v ) )
4 frrlem11.4
 |-  C = ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } )
5 1 2 3 frrlem9
 |-  ( ph -> Fun F )
6 funres
 |-  ( Fun F -> Fun ( F |` S ) )
7 5 6 syl
 |-  ( ph -> Fun ( F |` S ) )
8 dmres
 |-  dom ( F |` S ) = ( S i^i dom F )
9 df-fn
 |-  ( ( F |` S ) Fn ( S i^i dom F ) <-> ( Fun ( F |` S ) /\ dom ( F |` S ) = ( S i^i dom F ) ) )
10 8 9 mpbiran2
 |-  ( ( F |` S ) Fn ( S i^i dom F ) <-> Fun ( F |` S ) )
11 7 10 sylibr
 |-  ( ph -> ( F |` S ) Fn ( S i^i dom F ) )
12 vex
 |-  z e. _V
13 ovex
 |-  ( z G ( F |` Pred ( R , A , z ) ) ) e. _V
14 12 13 fnsn
 |-  { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } Fn { z }
15 11 14 jctir
 |-  ( ph -> ( ( F |` S ) Fn ( S i^i dom F ) /\ { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } Fn { z } ) )
16 eldifn
 |-  ( z e. ( A \ dom F ) -> -. z e. dom F )
17 elinel2
 |-  ( z e. ( S i^i dom F ) -> z e. dom F )
18 16 17 nsyl
 |-  ( z e. ( A \ dom F ) -> -. z e. ( S i^i dom F ) )
19 disjsn
 |-  ( ( ( S i^i dom F ) i^i { z } ) = (/) <-> -. z e. ( S i^i dom F ) )
20 18 19 sylibr
 |-  ( z e. ( A \ dom F ) -> ( ( S i^i dom F ) i^i { z } ) = (/) )
21 fnun
 |-  ( ( ( ( F |` S ) Fn ( S i^i dom F ) /\ { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } Fn { z } ) /\ ( ( S i^i dom F ) i^i { z } ) = (/) ) -> ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) Fn ( ( S i^i dom F ) u. { z } ) )
22 15 20 21 syl2an
 |-  ( ( ph /\ z e. ( A \ dom F ) ) -> ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) Fn ( ( S i^i dom F ) u. { z } ) )
23 4 fneq1i
 |-  ( C Fn ( ( S i^i dom F ) u. { z } ) <-> ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) Fn ( ( S i^i dom F ) u. { z } ) )
24 22 23 sylibr
 |-  ( ( ph /\ z e. ( A \ dom F ) ) -> C Fn ( ( S i^i dom F ) u. { z } ) )