Step |
Hyp |
Ref |
Expression |
1 |
|
frrlem11.1 |
|- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
2 |
|
frrlem11.2 |
|- F = frecs ( R , A , G ) |
3 |
|
frrlem11.3 |
|- ( ( ph /\ ( g e. B /\ h e. B ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) |
4 |
|
frrlem11.4 |
|- C = ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) |
5 |
1 2 3
|
frrlem9 |
|- ( ph -> Fun F ) |
6 |
5
|
funresd |
|- ( ph -> Fun ( F |` S ) ) |
7 |
|
dmres |
|- dom ( F |` S ) = ( S i^i dom F ) |
8 |
|
df-fn |
|- ( ( F |` S ) Fn ( S i^i dom F ) <-> ( Fun ( F |` S ) /\ dom ( F |` S ) = ( S i^i dom F ) ) ) |
9 |
7 8
|
mpbiran2 |
|- ( ( F |` S ) Fn ( S i^i dom F ) <-> Fun ( F |` S ) ) |
10 |
6 9
|
sylibr |
|- ( ph -> ( F |` S ) Fn ( S i^i dom F ) ) |
11 |
|
vex |
|- z e. _V |
12 |
|
ovex |
|- ( z G ( F |` Pred ( R , A , z ) ) ) e. _V |
13 |
11 12
|
fnsn |
|- { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } Fn { z } |
14 |
10 13
|
jctir |
|- ( ph -> ( ( F |` S ) Fn ( S i^i dom F ) /\ { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } Fn { z } ) ) |
15 |
|
eldifn |
|- ( z e. ( A \ dom F ) -> -. z e. dom F ) |
16 |
|
elinel2 |
|- ( z e. ( S i^i dom F ) -> z e. dom F ) |
17 |
15 16
|
nsyl |
|- ( z e. ( A \ dom F ) -> -. z e. ( S i^i dom F ) ) |
18 |
|
disjsn |
|- ( ( ( S i^i dom F ) i^i { z } ) = (/) <-> -. z e. ( S i^i dom F ) ) |
19 |
17 18
|
sylibr |
|- ( z e. ( A \ dom F ) -> ( ( S i^i dom F ) i^i { z } ) = (/) ) |
20 |
|
fnun |
|- ( ( ( ( F |` S ) Fn ( S i^i dom F ) /\ { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } Fn { z } ) /\ ( ( S i^i dom F ) i^i { z } ) = (/) ) -> ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) Fn ( ( S i^i dom F ) u. { z } ) ) |
21 |
14 19 20
|
syl2an |
|- ( ( ph /\ z e. ( A \ dom F ) ) -> ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) Fn ( ( S i^i dom F ) u. { z } ) ) |
22 |
4
|
fneq1i |
|- ( C Fn ( ( S i^i dom F ) u. { z } ) <-> ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) Fn ( ( S i^i dom F ) u. { z } ) ) |
23 |
21 22
|
sylibr |
|- ( ( ph /\ z e. ( A \ dom F ) ) -> C Fn ( ( S i^i dom F ) u. { z } ) ) |