Step |
Hyp |
Ref |
Expression |
1 |
|
frrlem11.1 |
|- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
2 |
|
frrlem11.2 |
|- F = frecs ( R , A , G ) |
3 |
|
frrlem11.3 |
|- ( ( ph /\ ( g e. B /\ h e. B ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) |
4 |
|
frrlem11.4 |
|- C = ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) |
5 |
|
frrlem12.5 |
|- ( ph -> R Fr A ) |
6 |
|
frrlem12.6 |
|- ( ( ph /\ z e. A ) -> Pred ( R , A , z ) C_ S ) |
7 |
|
frrlem12.7 |
|- ( ( ph /\ z e. A ) -> A. w e. S Pred ( R , A , w ) C_ S ) |
8 |
|
elun |
|- ( w e. ( ( S i^i dom F ) u. { z } ) <-> ( w e. ( S i^i dom F ) \/ w e. { z } ) ) |
9 |
|
velsn |
|- ( w e. { z } <-> w = z ) |
10 |
9
|
orbi2i |
|- ( ( w e. ( S i^i dom F ) \/ w e. { z } ) <-> ( w e. ( S i^i dom F ) \/ w = z ) ) |
11 |
8 10
|
bitri |
|- ( w e. ( ( S i^i dom F ) u. { z } ) <-> ( w e. ( S i^i dom F ) \/ w = z ) ) |
12 |
|
elinel2 |
|- ( w e. ( S i^i dom F ) -> w e. dom F ) |
13 |
1
|
frrlem1 |
|- B = { p | E. q ( p Fn q /\ ( q C_ A /\ A. w e. q Pred ( R , A , w ) C_ q ) /\ A. w e. q ( p ` w ) = ( w G ( p |` Pred ( R , A , w ) ) ) ) } |
14 |
|
breq1 |
|- ( x = q -> ( x g u <-> q g u ) ) |
15 |
|
breq1 |
|- ( x = q -> ( x h v <-> q h v ) ) |
16 |
14 15
|
anbi12d |
|- ( x = q -> ( ( x g u /\ x h v ) <-> ( q g u /\ q h v ) ) ) |
17 |
16
|
imbi1d |
|- ( x = q -> ( ( ( x g u /\ x h v ) -> u = v ) <-> ( ( q g u /\ q h v ) -> u = v ) ) ) |
18 |
17
|
imbi2d |
|- ( x = q -> ( ( ( ph /\ ( g e. B /\ h e. B ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) <-> ( ( ph /\ ( g e. B /\ h e. B ) ) -> ( ( q g u /\ q h v ) -> u = v ) ) ) ) |
19 |
18 3
|
chvarvv |
|- ( ( ph /\ ( g e. B /\ h e. B ) ) -> ( ( q g u /\ q h v ) -> u = v ) ) |
20 |
13 2 19
|
frrlem10 |
|- ( ( ph /\ w e. dom F ) -> ( F ` w ) = ( w G ( F |` Pred ( R , A , w ) ) ) ) |
21 |
12 20
|
sylan2 |
|- ( ( ph /\ w e. ( S i^i dom F ) ) -> ( F ` w ) = ( w G ( F |` Pred ( R , A , w ) ) ) ) |
22 |
21
|
adantlr |
|- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( F ` w ) = ( w G ( F |` Pred ( R , A , w ) ) ) ) |
23 |
4
|
fveq1i |
|- ( C ` w ) = ( ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) ` w ) |
24 |
1 2 3
|
frrlem9 |
|- ( ph -> Fun F ) |
25 |
24
|
funresd |
|- ( ph -> Fun ( F |` S ) ) |
26 |
|
dmres |
|- dom ( F |` S ) = ( S i^i dom F ) |
27 |
|
df-fn |
|- ( ( F |` S ) Fn ( S i^i dom F ) <-> ( Fun ( F |` S ) /\ dom ( F |` S ) = ( S i^i dom F ) ) ) |
28 |
25 26 27
|
sylanblrc |
|- ( ph -> ( F |` S ) Fn ( S i^i dom F ) ) |
29 |
28
|
adantr |
|- ( ( ph /\ z e. ( A \ dom F ) ) -> ( F |` S ) Fn ( S i^i dom F ) ) |
30 |
29
|
adantr |
|- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( F |` S ) Fn ( S i^i dom F ) ) |
31 |
|
vex |
|- z e. _V |
32 |
|
ovex |
|- ( z G ( F |` Pred ( R , A , z ) ) ) e. _V |
33 |
31 32
|
fnsn |
|- { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } Fn { z } |
34 |
33
|
a1i |
|- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } Fn { z } ) |
35 |
|
eldifn |
|- ( z e. ( A \ dom F ) -> -. z e. dom F ) |
36 |
|
elinel2 |
|- ( z e. ( S i^i dom F ) -> z e. dom F ) |
37 |
35 36
|
nsyl |
|- ( z e. ( A \ dom F ) -> -. z e. ( S i^i dom F ) ) |
38 |
|
disjsn |
|- ( ( ( S i^i dom F ) i^i { z } ) = (/) <-> -. z e. ( S i^i dom F ) ) |
39 |
37 38
|
sylibr |
|- ( z e. ( A \ dom F ) -> ( ( S i^i dom F ) i^i { z } ) = (/) ) |
40 |
39
|
adantl |
|- ( ( ph /\ z e. ( A \ dom F ) ) -> ( ( S i^i dom F ) i^i { z } ) = (/) ) |
41 |
40
|
adantr |
|- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( ( S i^i dom F ) i^i { z } ) = (/) ) |
42 |
|
simpr |
|- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> w e. ( S i^i dom F ) ) |
43 |
|
fvun1 |
|- ( ( ( F |` S ) Fn ( S i^i dom F ) /\ { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } Fn { z } /\ ( ( ( S i^i dom F ) i^i { z } ) = (/) /\ w e. ( S i^i dom F ) ) ) -> ( ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) ` w ) = ( ( F |` S ) ` w ) ) |
44 |
30 34 41 42 43
|
syl112anc |
|- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) ` w ) = ( ( F |` S ) ` w ) ) |
45 |
23 44
|
eqtrid |
|- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( C ` w ) = ( ( F |` S ) ` w ) ) |
46 |
|
elinel1 |
|- ( w e. ( S i^i dom F ) -> w e. S ) |
47 |
46
|
adantl |
|- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> w e. S ) |
48 |
47
|
fvresd |
|- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( ( F |` S ) ` w ) = ( F ` w ) ) |
49 |
45 48
|
eqtrd |
|- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( C ` w ) = ( F ` w ) ) |
50 |
1 2 3 4
|
frrlem11 |
|- ( ( ph /\ z e. ( A \ dom F ) ) -> C Fn ( ( S i^i dom F ) u. { z } ) ) |
51 |
|
fnfun |
|- ( C Fn ( ( S i^i dom F ) u. { z } ) -> Fun C ) |
52 |
50 51
|
syl |
|- ( ( ph /\ z e. ( A \ dom F ) ) -> Fun C ) |
53 |
52
|
adantr |
|- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> Fun C ) |
54 |
|
ssun1 |
|- ( F |` S ) C_ ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) |
55 |
54 4
|
sseqtrri |
|- ( F |` S ) C_ C |
56 |
55
|
a1i |
|- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( F |` S ) C_ C ) |
57 |
|
eldifi |
|- ( z e. ( A \ dom F ) -> z e. A ) |
58 |
57 7
|
sylan2 |
|- ( ( ph /\ z e. ( A \ dom F ) ) -> A. w e. S Pred ( R , A , w ) C_ S ) |
59 |
|
rspa |
|- ( ( A. w e. S Pred ( R , A , w ) C_ S /\ w e. S ) -> Pred ( R , A , w ) C_ S ) |
60 |
58 46 59
|
syl2an |
|- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> Pred ( R , A , w ) C_ S ) |
61 |
1 2
|
frrlem8 |
|- ( w e. dom F -> Pred ( R , A , w ) C_ dom F ) |
62 |
12 61
|
syl |
|- ( w e. ( S i^i dom F ) -> Pred ( R , A , w ) C_ dom F ) |
63 |
62
|
adantl |
|- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> Pred ( R , A , w ) C_ dom F ) |
64 |
60 63
|
ssind |
|- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> Pred ( R , A , w ) C_ ( S i^i dom F ) ) |
65 |
64 26
|
sseqtrrdi |
|- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> Pred ( R , A , w ) C_ dom ( F |` S ) ) |
66 |
|
fun2ssres |
|- ( ( Fun C /\ ( F |` S ) C_ C /\ Pred ( R , A , w ) C_ dom ( F |` S ) ) -> ( C |` Pred ( R , A , w ) ) = ( ( F |` S ) |` Pred ( R , A , w ) ) ) |
67 |
53 56 65 66
|
syl3anc |
|- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( C |` Pred ( R , A , w ) ) = ( ( F |` S ) |` Pred ( R , A , w ) ) ) |
68 |
60
|
resabs1d |
|- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( ( F |` S ) |` Pred ( R , A , w ) ) = ( F |` Pred ( R , A , w ) ) ) |
69 |
67 68
|
eqtrd |
|- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( C |` Pred ( R , A , w ) ) = ( F |` Pred ( R , A , w ) ) ) |
70 |
69
|
oveq2d |
|- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( w G ( C |` Pred ( R , A , w ) ) ) = ( w G ( F |` Pred ( R , A , w ) ) ) ) |
71 |
22 49 70
|
3eqtr4d |
|- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) |
72 |
71
|
ex |
|- ( ( ph /\ z e. ( A \ dom F ) ) -> ( w e. ( S i^i dom F ) -> ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) |
73 |
31 32
|
fvsn |
|- ( { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ` z ) = ( z G ( F |` Pred ( R , A , z ) ) ) |
74 |
4
|
fveq1i |
|- ( C ` z ) = ( ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) ` z ) |
75 |
33
|
a1i |
|- ( ( ph /\ z e. ( A \ dom F ) ) -> { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } Fn { z } ) |
76 |
|
vsnid |
|- z e. { z } |
77 |
76
|
a1i |
|- ( ( ph /\ z e. ( A \ dom F ) ) -> z e. { z } ) |
78 |
|
fvun2 |
|- ( ( ( F |` S ) Fn ( S i^i dom F ) /\ { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } Fn { z } /\ ( ( ( S i^i dom F ) i^i { z } ) = (/) /\ z e. { z } ) ) -> ( ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) ` z ) = ( { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ` z ) ) |
79 |
29 75 40 77 78
|
syl112anc |
|- ( ( ph /\ z e. ( A \ dom F ) ) -> ( ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) ` z ) = ( { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ` z ) ) |
80 |
74 79
|
eqtrid |
|- ( ( ph /\ z e. ( A \ dom F ) ) -> ( C ` z ) = ( { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ` z ) ) |
81 |
4
|
reseq1i |
|- ( C |` Pred ( R , A , z ) ) = ( ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) |` Pred ( R , A , z ) ) |
82 |
|
resundir |
|- ( ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) |` Pred ( R , A , z ) ) = ( ( ( F |` S ) |` Pred ( R , A , z ) ) u. ( { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } |` Pred ( R , A , z ) ) ) |
83 |
81 82
|
eqtri |
|- ( C |` Pred ( R , A , z ) ) = ( ( ( F |` S ) |` Pred ( R , A , z ) ) u. ( { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } |` Pred ( R , A , z ) ) ) |
84 |
57 6
|
sylan2 |
|- ( ( ph /\ z e. ( A \ dom F ) ) -> Pred ( R , A , z ) C_ S ) |
85 |
84
|
resabs1d |
|- ( ( ph /\ z e. ( A \ dom F ) ) -> ( ( F |` S ) |` Pred ( R , A , z ) ) = ( F |` Pred ( R , A , z ) ) ) |
86 |
|
predfrirr |
|- ( R Fr A -> -. z e. Pred ( R , A , z ) ) |
87 |
5 86
|
syl |
|- ( ph -> -. z e. Pred ( R , A , z ) ) |
88 |
87
|
adantr |
|- ( ( ph /\ z e. ( A \ dom F ) ) -> -. z e. Pred ( R , A , z ) ) |
89 |
|
ressnop0 |
|- ( -. z e. Pred ( R , A , z ) -> ( { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } |` Pred ( R , A , z ) ) = (/) ) |
90 |
88 89
|
syl |
|- ( ( ph /\ z e. ( A \ dom F ) ) -> ( { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } |` Pred ( R , A , z ) ) = (/) ) |
91 |
85 90
|
uneq12d |
|- ( ( ph /\ z e. ( A \ dom F ) ) -> ( ( ( F |` S ) |` Pred ( R , A , z ) ) u. ( { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } |` Pred ( R , A , z ) ) ) = ( ( F |` Pred ( R , A , z ) ) u. (/) ) ) |
92 |
|
un0 |
|- ( ( F |` Pred ( R , A , z ) ) u. (/) ) = ( F |` Pred ( R , A , z ) ) |
93 |
91 92
|
eqtrdi |
|- ( ( ph /\ z e. ( A \ dom F ) ) -> ( ( ( F |` S ) |` Pred ( R , A , z ) ) u. ( { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } |` Pred ( R , A , z ) ) ) = ( F |` Pred ( R , A , z ) ) ) |
94 |
83 93
|
eqtrid |
|- ( ( ph /\ z e. ( A \ dom F ) ) -> ( C |` Pred ( R , A , z ) ) = ( F |` Pred ( R , A , z ) ) ) |
95 |
94
|
oveq2d |
|- ( ( ph /\ z e. ( A \ dom F ) ) -> ( z G ( C |` Pred ( R , A , z ) ) ) = ( z G ( F |` Pred ( R , A , z ) ) ) ) |
96 |
73 80 95
|
3eqtr4a |
|- ( ( ph /\ z e. ( A \ dom F ) ) -> ( C ` z ) = ( z G ( C |` Pred ( R , A , z ) ) ) ) |
97 |
|
fveq2 |
|- ( w = z -> ( C ` w ) = ( C ` z ) ) |
98 |
|
id |
|- ( w = z -> w = z ) |
99 |
|
predeq3 |
|- ( w = z -> Pred ( R , A , w ) = Pred ( R , A , z ) ) |
100 |
99
|
reseq2d |
|- ( w = z -> ( C |` Pred ( R , A , w ) ) = ( C |` Pred ( R , A , z ) ) ) |
101 |
98 100
|
oveq12d |
|- ( w = z -> ( w G ( C |` Pred ( R , A , w ) ) ) = ( z G ( C |` Pred ( R , A , z ) ) ) ) |
102 |
97 101
|
eqeq12d |
|- ( w = z -> ( ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) <-> ( C ` z ) = ( z G ( C |` Pred ( R , A , z ) ) ) ) ) |
103 |
96 102
|
syl5ibrcom |
|- ( ( ph /\ z e. ( A \ dom F ) ) -> ( w = z -> ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) |
104 |
72 103
|
jaod |
|- ( ( ph /\ z e. ( A \ dom F ) ) -> ( ( w e. ( S i^i dom F ) \/ w = z ) -> ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) |
105 |
11 104
|
syl5bi |
|- ( ( ph /\ z e. ( A \ dom F ) ) -> ( w e. ( ( S i^i dom F ) u. { z } ) -> ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) |
106 |
105
|
3impia |
|- ( ( ph /\ z e. ( A \ dom F ) /\ w e. ( ( S i^i dom F ) u. { z } ) ) -> ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) |