| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frrlem11.1 | ⊢ 𝐵  =  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } | 
						
							| 2 |  | frrlem11.2 | ⊢ 𝐹  =  frecs ( 𝑅 ,  𝐴 ,  𝐺 ) | 
						
							| 3 |  | frrlem11.3 | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 ) )  →  ( ( 𝑥 𝑔 𝑢  ∧  𝑥 ℎ 𝑣 )  →  𝑢  =  𝑣 ) ) | 
						
							| 4 |  | frrlem11.4 | ⊢ 𝐶  =  ( ( 𝐹  ↾  𝑆 )  ∪  { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 } ) | 
						
							| 5 |  | frrlem12.5 | ⊢ ( 𝜑  →  𝑅  Fr  𝐴 ) | 
						
							| 6 |  | frrlem12.6 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐴 )  →  Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑆 ) | 
						
							| 7 |  | frrlem12.7 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐴 )  →  ∀ 𝑤  ∈  𝑆 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑆 ) | 
						
							| 8 |  | elun | ⊢ ( 𝑤  ∈  ( ( 𝑆  ∩  dom  𝐹 )  ∪  { 𝑧 } )  ↔  ( 𝑤  ∈  ( 𝑆  ∩  dom  𝐹 )  ∨  𝑤  ∈  { 𝑧 } ) ) | 
						
							| 9 |  | velsn | ⊢ ( 𝑤  ∈  { 𝑧 }  ↔  𝑤  =  𝑧 ) | 
						
							| 10 | 9 | orbi2i | ⊢ ( ( 𝑤  ∈  ( 𝑆  ∩  dom  𝐹 )  ∨  𝑤  ∈  { 𝑧 } )  ↔  ( 𝑤  ∈  ( 𝑆  ∩  dom  𝐹 )  ∨  𝑤  =  𝑧 ) ) | 
						
							| 11 | 8 10 | bitri | ⊢ ( 𝑤  ∈  ( ( 𝑆  ∩  dom  𝐹 )  ∪  { 𝑧 } )  ↔  ( 𝑤  ∈  ( 𝑆  ∩  dom  𝐹 )  ∨  𝑤  =  𝑧 ) ) | 
						
							| 12 |  | elinel2 | ⊢ ( 𝑤  ∈  ( 𝑆  ∩  dom  𝐹 )  →  𝑤  ∈  dom  𝐹 ) | 
						
							| 13 | 1 | frrlem1 | ⊢ 𝐵  =  { 𝑝  ∣  ∃ 𝑞 ( 𝑝  Fn  𝑞  ∧  ( 𝑞  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑞 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑞 )  ∧  ∀ 𝑤  ∈  𝑞 ( 𝑝 ‘ 𝑤 )  =  ( 𝑤 𝐺 ( 𝑝  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) ) } | 
						
							| 14 |  | breq1 | ⊢ ( 𝑥  =  𝑞  →  ( 𝑥 𝑔 𝑢  ↔  𝑞 𝑔 𝑢 ) ) | 
						
							| 15 |  | breq1 | ⊢ ( 𝑥  =  𝑞  →  ( 𝑥 ℎ 𝑣  ↔  𝑞 ℎ 𝑣 ) ) | 
						
							| 16 | 14 15 | anbi12d | ⊢ ( 𝑥  =  𝑞  →  ( ( 𝑥 𝑔 𝑢  ∧  𝑥 ℎ 𝑣 )  ↔  ( 𝑞 𝑔 𝑢  ∧  𝑞 ℎ 𝑣 ) ) ) | 
						
							| 17 | 16 | imbi1d | ⊢ ( 𝑥  =  𝑞  →  ( ( ( 𝑥 𝑔 𝑢  ∧  𝑥 ℎ 𝑣 )  →  𝑢  =  𝑣 )  ↔  ( ( 𝑞 𝑔 𝑢  ∧  𝑞 ℎ 𝑣 )  →  𝑢  =  𝑣 ) ) ) | 
						
							| 18 | 17 | imbi2d | ⊢ ( 𝑥  =  𝑞  →  ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 ) )  →  ( ( 𝑥 𝑔 𝑢  ∧  𝑥 ℎ 𝑣 )  →  𝑢  =  𝑣 ) )  ↔  ( ( 𝜑  ∧  ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 ) )  →  ( ( 𝑞 𝑔 𝑢  ∧  𝑞 ℎ 𝑣 )  →  𝑢  =  𝑣 ) ) ) ) | 
						
							| 19 | 18 3 | chvarvv | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 ) )  →  ( ( 𝑞 𝑔 𝑢  ∧  𝑞 ℎ 𝑣 )  →  𝑢  =  𝑣 ) ) | 
						
							| 20 | 13 2 19 | frrlem10 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  dom  𝐹 )  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝑤 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) ) | 
						
							| 21 | 12 20 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝑆  ∩  dom  𝐹 ) )  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝑤 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) ) | 
						
							| 22 | 21 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  ∧  𝑤  ∈  ( 𝑆  ∩  dom  𝐹 ) )  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝑤 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) ) | 
						
							| 23 | 4 | fveq1i | ⊢ ( 𝐶 ‘ 𝑤 )  =  ( ( ( 𝐹  ↾  𝑆 )  ∪  { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 } ) ‘ 𝑤 ) | 
						
							| 24 | 1 2 3 | frrlem9 | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 25 | 24 | funresd | ⊢ ( 𝜑  →  Fun  ( 𝐹  ↾  𝑆 ) ) | 
						
							| 26 |  | dmres | ⊢ dom  ( 𝐹  ↾  𝑆 )  =  ( 𝑆  ∩  dom  𝐹 ) | 
						
							| 27 |  | df-fn | ⊢ ( ( 𝐹  ↾  𝑆 )  Fn  ( 𝑆  ∩  dom  𝐹 )  ↔  ( Fun  ( 𝐹  ↾  𝑆 )  ∧  dom  ( 𝐹  ↾  𝑆 )  =  ( 𝑆  ∩  dom  𝐹 ) ) ) | 
						
							| 28 | 25 26 27 | sylanblrc | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝑆 )  Fn  ( 𝑆  ∩  dom  𝐹 ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  →  ( 𝐹  ↾  𝑆 )  Fn  ( 𝑆  ∩  dom  𝐹 ) ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  ∧  𝑤  ∈  ( 𝑆  ∩  dom  𝐹 ) )  →  ( 𝐹  ↾  𝑆 )  Fn  ( 𝑆  ∩  dom  𝐹 ) ) | 
						
							| 31 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 32 |  | ovex | ⊢ ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) )  ∈  V | 
						
							| 33 | 31 32 | fnsn | ⊢ { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 }  Fn  { 𝑧 } | 
						
							| 34 | 33 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  ∧  𝑤  ∈  ( 𝑆  ∩  dom  𝐹 ) )  →  { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 }  Fn  { 𝑧 } ) | 
						
							| 35 |  | eldifn | ⊢ ( 𝑧  ∈  ( 𝐴  ∖  dom  𝐹 )  →  ¬  𝑧  ∈  dom  𝐹 ) | 
						
							| 36 |  | elinel2 | ⊢ ( 𝑧  ∈  ( 𝑆  ∩  dom  𝐹 )  →  𝑧  ∈  dom  𝐹 ) | 
						
							| 37 | 35 36 | nsyl | ⊢ ( 𝑧  ∈  ( 𝐴  ∖  dom  𝐹 )  →  ¬  𝑧  ∈  ( 𝑆  ∩  dom  𝐹 ) ) | 
						
							| 38 |  | disjsn | ⊢ ( ( ( 𝑆  ∩  dom  𝐹 )  ∩  { 𝑧 } )  =  ∅  ↔  ¬  𝑧  ∈  ( 𝑆  ∩  dom  𝐹 ) ) | 
						
							| 39 | 37 38 | sylibr | ⊢ ( 𝑧  ∈  ( 𝐴  ∖  dom  𝐹 )  →  ( ( 𝑆  ∩  dom  𝐹 )  ∩  { 𝑧 } )  =  ∅ ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  →  ( ( 𝑆  ∩  dom  𝐹 )  ∩  { 𝑧 } )  =  ∅ ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  ∧  𝑤  ∈  ( 𝑆  ∩  dom  𝐹 ) )  →  ( ( 𝑆  ∩  dom  𝐹 )  ∩  { 𝑧 } )  =  ∅ ) | 
						
							| 42 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  ∧  𝑤  ∈  ( 𝑆  ∩  dom  𝐹 ) )  →  𝑤  ∈  ( 𝑆  ∩  dom  𝐹 ) ) | 
						
							| 43 |  | fvun1 | ⊢ ( ( ( 𝐹  ↾  𝑆 )  Fn  ( 𝑆  ∩  dom  𝐹 )  ∧  { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 }  Fn  { 𝑧 }  ∧  ( ( ( 𝑆  ∩  dom  𝐹 )  ∩  { 𝑧 } )  =  ∅  ∧  𝑤  ∈  ( 𝑆  ∩  dom  𝐹 ) ) )  →  ( ( ( 𝐹  ↾  𝑆 )  ∪  { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 } ) ‘ 𝑤 )  =  ( ( 𝐹  ↾  𝑆 ) ‘ 𝑤 ) ) | 
						
							| 44 | 30 34 41 42 43 | syl112anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  ∧  𝑤  ∈  ( 𝑆  ∩  dom  𝐹 ) )  →  ( ( ( 𝐹  ↾  𝑆 )  ∪  { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 } ) ‘ 𝑤 )  =  ( ( 𝐹  ↾  𝑆 ) ‘ 𝑤 ) ) | 
						
							| 45 | 23 44 | eqtrid | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  ∧  𝑤  ∈  ( 𝑆  ∩  dom  𝐹 ) )  →  ( 𝐶 ‘ 𝑤 )  =  ( ( 𝐹  ↾  𝑆 ) ‘ 𝑤 ) ) | 
						
							| 46 |  | elinel1 | ⊢ ( 𝑤  ∈  ( 𝑆  ∩  dom  𝐹 )  →  𝑤  ∈  𝑆 ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  ∧  𝑤  ∈  ( 𝑆  ∩  dom  𝐹 ) )  →  𝑤  ∈  𝑆 ) | 
						
							| 48 | 47 | fvresd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  ∧  𝑤  ∈  ( 𝑆  ∩  dom  𝐹 ) )  →  ( ( 𝐹  ↾  𝑆 ) ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 49 | 45 48 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  ∧  𝑤  ∈  ( 𝑆  ∩  dom  𝐹 ) )  →  ( 𝐶 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 50 | 1 2 3 4 | frrlem11 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  →  𝐶  Fn  ( ( 𝑆  ∩  dom  𝐹 )  ∪  { 𝑧 } ) ) | 
						
							| 51 |  | fnfun | ⊢ ( 𝐶  Fn  ( ( 𝑆  ∩  dom  𝐹 )  ∪  { 𝑧 } )  →  Fun  𝐶 ) | 
						
							| 52 | 50 51 | syl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  →  Fun  𝐶 ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  ∧  𝑤  ∈  ( 𝑆  ∩  dom  𝐹 ) )  →  Fun  𝐶 ) | 
						
							| 54 |  | ssun1 | ⊢ ( 𝐹  ↾  𝑆 )  ⊆  ( ( 𝐹  ↾  𝑆 )  ∪  { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 } ) | 
						
							| 55 | 54 4 | sseqtrri | ⊢ ( 𝐹  ↾  𝑆 )  ⊆  𝐶 | 
						
							| 56 | 55 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  ∧  𝑤  ∈  ( 𝑆  ∩  dom  𝐹 ) )  →  ( 𝐹  ↾  𝑆 )  ⊆  𝐶 ) | 
						
							| 57 |  | eldifi | ⊢ ( 𝑧  ∈  ( 𝐴  ∖  dom  𝐹 )  →  𝑧  ∈  𝐴 ) | 
						
							| 58 | 57 7 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  →  ∀ 𝑤  ∈  𝑆 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑆 ) | 
						
							| 59 |  | rspa | ⊢ ( ( ∀ 𝑤  ∈  𝑆 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑆  ∧  𝑤  ∈  𝑆 )  →  Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑆 ) | 
						
							| 60 | 58 46 59 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  ∧  𝑤  ∈  ( 𝑆  ∩  dom  𝐹 ) )  →  Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑆 ) | 
						
							| 61 | 1 2 | frrlem8 | ⊢ ( 𝑤  ∈  dom  𝐹  →  Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  dom  𝐹 ) | 
						
							| 62 | 12 61 | syl | ⊢ ( 𝑤  ∈  ( 𝑆  ∩  dom  𝐹 )  →  Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  dom  𝐹 ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  ∧  𝑤  ∈  ( 𝑆  ∩  dom  𝐹 ) )  →  Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  dom  𝐹 ) | 
						
							| 64 | 60 63 | ssind | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  ∧  𝑤  ∈  ( 𝑆  ∩  dom  𝐹 ) )  →  Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  ( 𝑆  ∩  dom  𝐹 ) ) | 
						
							| 65 | 64 26 | sseqtrrdi | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  ∧  𝑤  ∈  ( 𝑆  ∩  dom  𝐹 ) )  →  Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  dom  ( 𝐹  ↾  𝑆 ) ) | 
						
							| 66 |  | fun2ssres | ⊢ ( ( Fun  𝐶  ∧  ( 𝐹  ↾  𝑆 )  ⊆  𝐶  ∧  Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  dom  ( 𝐹  ↾  𝑆 ) )  →  ( 𝐶  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) )  =  ( ( 𝐹  ↾  𝑆 )  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) | 
						
							| 67 | 53 56 65 66 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  ∧  𝑤  ∈  ( 𝑆  ∩  dom  𝐹 ) )  →  ( 𝐶  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) )  =  ( ( 𝐹  ↾  𝑆 )  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) | 
						
							| 68 | 60 | resabs1d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  ∧  𝑤  ∈  ( 𝑆  ∩  dom  𝐹 ) )  →  ( ( 𝐹  ↾  𝑆 )  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) )  =  ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) | 
						
							| 69 | 67 68 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  ∧  𝑤  ∈  ( 𝑆  ∩  dom  𝐹 ) )  →  ( 𝐶  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) )  =  ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) | 
						
							| 70 | 69 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  ∧  𝑤  ∈  ( 𝑆  ∩  dom  𝐹 ) )  →  ( 𝑤 𝐺 ( 𝐶  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) )  =  ( 𝑤 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) ) | 
						
							| 71 | 22 49 70 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  ∧  𝑤  ∈  ( 𝑆  ∩  dom  𝐹 ) )  →  ( 𝐶 ‘ 𝑤 )  =  ( 𝑤 𝐺 ( 𝐶  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) ) | 
						
							| 72 | 71 | ex | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  →  ( 𝑤  ∈  ( 𝑆  ∩  dom  𝐹 )  →  ( 𝐶 ‘ 𝑤 )  =  ( 𝑤 𝐺 ( 𝐶  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) ) ) | 
						
							| 73 | 31 32 | fvsn | ⊢ ( { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 } ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) | 
						
							| 74 | 4 | fveq1i | ⊢ ( 𝐶 ‘ 𝑧 )  =  ( ( ( 𝐹  ↾  𝑆 )  ∪  { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 } ) ‘ 𝑧 ) | 
						
							| 75 | 33 | a1i | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  →  { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 }  Fn  { 𝑧 } ) | 
						
							| 76 |  | vsnid | ⊢ 𝑧  ∈  { 𝑧 } | 
						
							| 77 | 76 | a1i | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  →  𝑧  ∈  { 𝑧 } ) | 
						
							| 78 |  | fvun2 | ⊢ ( ( ( 𝐹  ↾  𝑆 )  Fn  ( 𝑆  ∩  dom  𝐹 )  ∧  { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 }  Fn  { 𝑧 }  ∧  ( ( ( 𝑆  ∩  dom  𝐹 )  ∩  { 𝑧 } )  =  ∅  ∧  𝑧  ∈  { 𝑧 } ) )  →  ( ( ( 𝐹  ↾  𝑆 )  ∪  { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 } ) ‘ 𝑧 )  =  ( { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 } ‘ 𝑧 ) ) | 
						
							| 79 | 29 75 40 77 78 | syl112anc | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  →  ( ( ( 𝐹  ↾  𝑆 )  ∪  { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 } ) ‘ 𝑧 )  =  ( { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 } ‘ 𝑧 ) ) | 
						
							| 80 | 74 79 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  →  ( 𝐶 ‘ 𝑧 )  =  ( { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 } ‘ 𝑧 ) ) | 
						
							| 81 | 4 | reseq1i | ⊢ ( 𝐶  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) )  =  ( ( ( 𝐹  ↾  𝑆 )  ∪  { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 } )  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) | 
						
							| 82 |  | resundir | ⊢ ( ( ( 𝐹  ↾  𝑆 )  ∪  { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 } )  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) )  =  ( ( ( 𝐹  ↾  𝑆 )  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) )  ∪  ( { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 }  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) | 
						
							| 83 | 81 82 | eqtri | ⊢ ( 𝐶  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) )  =  ( ( ( 𝐹  ↾  𝑆 )  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) )  ∪  ( { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 }  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) | 
						
							| 84 | 57 6 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  →  Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑆 ) | 
						
							| 85 | 84 | resabs1d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  →  ( ( 𝐹  ↾  𝑆 )  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) )  =  ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) | 
						
							| 86 |  | predfrirr | ⊢ ( 𝑅  Fr  𝐴  →  ¬  𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) | 
						
							| 87 | 5 86 | syl | ⊢ ( 𝜑  →  ¬  𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) | 
						
							| 88 | 87 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  →  ¬  𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) | 
						
							| 89 |  | ressnop0 | ⊢ ( ¬  𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑧 )  →  ( { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 }  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) )  =  ∅ ) | 
						
							| 90 | 88 89 | syl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  →  ( { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 }  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) )  =  ∅ ) | 
						
							| 91 | 85 90 | uneq12d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  →  ( ( ( 𝐹  ↾  𝑆 )  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) )  ∪  ( { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 }  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) )  =  ( ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) )  ∪  ∅ ) ) | 
						
							| 92 |  | un0 | ⊢ ( ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) )  ∪  ∅ )  =  ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) | 
						
							| 93 | 91 92 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  →  ( ( ( 𝐹  ↾  𝑆 )  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) )  ∪  ( { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 }  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) )  =  ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) | 
						
							| 94 | 83 93 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  →  ( 𝐶  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) )  =  ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) | 
						
							| 95 | 94 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  →  ( 𝑧 𝐺 ( 𝐶  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) )  =  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) | 
						
							| 96 | 73 80 95 | 3eqtr4a | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  →  ( 𝐶 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝐶  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) | 
						
							| 97 |  | fveq2 | ⊢ ( 𝑤  =  𝑧  →  ( 𝐶 ‘ 𝑤 )  =  ( 𝐶 ‘ 𝑧 ) ) | 
						
							| 98 |  | id | ⊢ ( 𝑤  =  𝑧  →  𝑤  =  𝑧 ) | 
						
							| 99 |  | predeq3 | ⊢ ( 𝑤  =  𝑧  →  Pred ( 𝑅 ,  𝐴 ,  𝑤 )  =  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) | 
						
							| 100 | 99 | reseq2d | ⊢ ( 𝑤  =  𝑧  →  ( 𝐶  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) )  =  ( 𝐶  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) | 
						
							| 101 | 98 100 | oveq12d | ⊢ ( 𝑤  =  𝑧  →  ( 𝑤 𝐺 ( 𝐶  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) )  =  ( 𝑧 𝐺 ( 𝐶  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) | 
						
							| 102 | 97 101 | eqeq12d | ⊢ ( 𝑤  =  𝑧  →  ( ( 𝐶 ‘ 𝑤 )  =  ( 𝑤 𝐺 ( 𝐶  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) )  ↔  ( 𝐶 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝐶  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) ) | 
						
							| 103 | 96 102 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  →  ( 𝑤  =  𝑧  →  ( 𝐶 ‘ 𝑤 )  =  ( 𝑤 𝐺 ( 𝐶  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) ) ) | 
						
							| 104 | 72 103 | jaod | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  →  ( ( 𝑤  ∈  ( 𝑆  ∩  dom  𝐹 )  ∨  𝑤  =  𝑧 )  →  ( 𝐶 ‘ 𝑤 )  =  ( 𝑤 𝐺 ( 𝐶  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) ) ) | 
						
							| 105 | 11 104 | biimtrid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  →  ( 𝑤  ∈  ( ( 𝑆  ∩  dom  𝐹 )  ∪  { 𝑧 } )  →  ( 𝐶 ‘ 𝑤 )  =  ( 𝑤 𝐺 ( 𝐶  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) ) ) | 
						
							| 106 | 105 | 3impia | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 )  ∧  𝑤  ∈  ( ( 𝑆  ∩  dom  𝐹 )  ∪  { 𝑧 } ) )  →  ( 𝐶 ‘ 𝑤 )  =  ( 𝑤 𝐺 ( 𝐶  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) ) |