Step |
Hyp |
Ref |
Expression |
1 |
|
frrlem11.1 |
⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } |
2 |
|
frrlem11.2 |
⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) |
3 |
|
frrlem11.3 |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) |
4 |
|
frrlem11.4 |
⊢ 𝐶 = ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) |
5 |
|
frrlem12.5 |
⊢ ( 𝜑 → 𝑅 Fr 𝐴 ) |
6 |
|
frrlem12.6 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑆 ) |
7 |
|
frrlem12.7 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ∀ 𝑤 ∈ 𝑆 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ) |
8 |
|
elun |
⊢ ( 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ↔ ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ∨ 𝑤 ∈ { 𝑧 } ) ) |
9 |
|
velsn |
⊢ ( 𝑤 ∈ { 𝑧 } ↔ 𝑤 = 𝑧 ) |
10 |
9
|
orbi2i |
⊢ ( ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ∨ 𝑤 ∈ { 𝑧 } ) ↔ ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ∨ 𝑤 = 𝑧 ) ) |
11 |
8 10
|
bitri |
⊢ ( 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ↔ ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ∨ 𝑤 = 𝑧 ) ) |
12 |
|
elinel2 |
⊢ ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) → 𝑤 ∈ dom 𝐹 ) |
13 |
1
|
frrlem1 |
⊢ 𝐵 = { 𝑝 ∣ ∃ 𝑞 ( 𝑝 Fn 𝑞 ∧ ( 𝑞 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑞 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑞 ) ∧ ∀ 𝑤 ∈ 𝑞 ( 𝑝 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑝 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) } |
14 |
|
breq1 |
⊢ ( 𝑥 = 𝑞 → ( 𝑥 𝑔 𝑢 ↔ 𝑞 𝑔 𝑢 ) ) |
15 |
|
breq1 |
⊢ ( 𝑥 = 𝑞 → ( 𝑥 ℎ 𝑣 ↔ 𝑞 ℎ 𝑣 ) ) |
16 |
14 15
|
anbi12d |
⊢ ( 𝑥 = 𝑞 → ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) ↔ ( 𝑞 𝑔 𝑢 ∧ 𝑞 ℎ 𝑣 ) ) ) |
17 |
16
|
imbi1d |
⊢ ( 𝑥 = 𝑞 → ( ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ↔ ( ( 𝑞 𝑔 𝑢 ∧ 𝑞 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) ) |
18 |
17
|
imbi2d |
⊢ ( 𝑥 = 𝑞 → ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) ↔ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑞 𝑔 𝑢 ∧ 𝑞 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) ) ) |
19 |
18 3
|
chvarvv |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑞 𝑔 𝑢 ∧ 𝑞 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) |
20 |
13 2 19
|
frrlem10 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
21 |
12 20
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( 𝐹 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
22 |
21
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( 𝐹 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
23 |
4
|
fveq1i |
⊢ ( 𝐶 ‘ 𝑤 ) = ( ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ‘ 𝑤 ) |
24 |
1 2 3
|
frrlem9 |
⊢ ( 𝜑 → Fun 𝐹 ) |
25 |
24
|
funresd |
⊢ ( 𝜑 → Fun ( 𝐹 ↾ 𝑆 ) ) |
26 |
|
dmres |
⊢ dom ( 𝐹 ↾ 𝑆 ) = ( 𝑆 ∩ dom 𝐹 ) |
27 |
|
df-fn |
⊢ ( ( 𝐹 ↾ 𝑆 ) Fn ( 𝑆 ∩ dom 𝐹 ) ↔ ( Fun ( 𝐹 ↾ 𝑆 ) ∧ dom ( 𝐹 ↾ 𝑆 ) = ( 𝑆 ∩ dom 𝐹 ) ) ) |
28 |
25 26 27
|
sylanblrc |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝑆 ) Fn ( 𝑆 ∩ dom 𝐹 ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( 𝐹 ↾ 𝑆 ) Fn ( 𝑆 ∩ dom 𝐹 ) ) |
30 |
29
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( 𝐹 ↾ 𝑆 ) Fn ( 𝑆 ∩ dom 𝐹 ) ) |
31 |
|
vex |
⊢ 𝑧 ∈ V |
32 |
|
ovex |
⊢ ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∈ V |
33 |
31 32
|
fnsn |
⊢ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } Fn { 𝑧 } |
34 |
33
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } Fn { 𝑧 } ) |
35 |
|
eldifn |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ¬ 𝑧 ∈ dom 𝐹 ) |
36 |
|
elinel2 |
⊢ ( 𝑧 ∈ ( 𝑆 ∩ dom 𝐹 ) → 𝑧 ∈ dom 𝐹 ) |
37 |
35 36
|
nsyl |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ¬ 𝑧 ∈ ( 𝑆 ∩ dom 𝐹 ) ) |
38 |
|
disjsn |
⊢ ( ( ( 𝑆 ∩ dom 𝐹 ) ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ ( 𝑆 ∩ dom 𝐹 ) ) |
39 |
37 38
|
sylibr |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ( ( 𝑆 ∩ dom 𝐹 ) ∩ { 𝑧 } ) = ∅ ) |
40 |
39
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( ( 𝑆 ∩ dom 𝐹 ) ∩ { 𝑧 } ) = ∅ ) |
41 |
40
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( ( 𝑆 ∩ dom 𝐹 ) ∩ { 𝑧 } ) = ∅ ) |
42 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) |
43 |
|
fvun1 |
⊢ ( ( ( 𝐹 ↾ 𝑆 ) Fn ( 𝑆 ∩ dom 𝐹 ) ∧ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } Fn { 𝑧 } ∧ ( ( ( 𝑆 ∩ dom 𝐹 ) ∩ { 𝑧 } ) = ∅ ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) ) → ( ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ‘ 𝑤 ) = ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑤 ) ) |
44 |
30 34 41 42 43
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ‘ 𝑤 ) = ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑤 ) ) |
45 |
23 44
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( 𝐶 ‘ 𝑤 ) = ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑤 ) ) |
46 |
|
elinel1 |
⊢ ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) → 𝑤 ∈ 𝑆 ) |
47 |
46
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → 𝑤 ∈ 𝑆 ) |
48 |
47
|
fvresd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑤 ) = ( 𝐹 ‘ 𝑤 ) ) |
49 |
45 48
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( 𝐶 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑤 ) ) |
50 |
1 2 3 4
|
frrlem11 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → 𝐶 Fn ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) |
51 |
|
fnfun |
⊢ ( 𝐶 Fn ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) → Fun 𝐶 ) |
52 |
50 51
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → Fun 𝐶 ) |
53 |
52
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → Fun 𝐶 ) |
54 |
|
ssun1 |
⊢ ( 𝐹 ↾ 𝑆 ) ⊆ ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) |
55 |
54 4
|
sseqtrri |
⊢ ( 𝐹 ↾ 𝑆 ) ⊆ 𝐶 |
56 |
55
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( 𝐹 ↾ 𝑆 ) ⊆ 𝐶 ) |
57 |
|
eldifi |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → 𝑧 ∈ 𝐴 ) |
58 |
57 7
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ∀ 𝑤 ∈ 𝑆 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ) |
59 |
|
rspa |
⊢ ( ( ∀ 𝑤 ∈ 𝑆 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ∧ 𝑤 ∈ 𝑆 ) → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ) |
60 |
58 46 59
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ) |
61 |
1 2
|
frrlem8 |
⊢ ( 𝑤 ∈ dom 𝐹 → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ dom 𝐹 ) |
62 |
12 61
|
syl |
⊢ ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ dom 𝐹 ) |
63 |
62
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ dom 𝐹 ) |
64 |
60 63
|
ssind |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( 𝑆 ∩ dom 𝐹 ) ) |
65 |
64 26
|
sseqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ dom ( 𝐹 ↾ 𝑆 ) ) |
66 |
|
fun2ssres |
⊢ ( ( Fun 𝐶 ∧ ( 𝐹 ↾ 𝑆 ) ⊆ 𝐶 ∧ Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ dom ( 𝐹 ↾ 𝑆 ) ) → ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) = ( ( 𝐹 ↾ 𝑆 ) ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) |
67 |
53 56 65 66
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) = ( ( 𝐹 ↾ 𝑆 ) ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) |
68 |
60
|
resabs1d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( ( 𝐹 ↾ 𝑆 ) ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) |
69 |
67 68
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) |
70 |
69
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) = ( 𝑤 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
71 |
22 49 70
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
72 |
71
|
ex |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) → ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
73 |
31 32
|
fvsn |
⊢ ( { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
74 |
4
|
fveq1i |
⊢ ( 𝐶 ‘ 𝑧 ) = ( ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ‘ 𝑧 ) |
75 |
33
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } Fn { 𝑧 } ) |
76 |
|
vsnid |
⊢ 𝑧 ∈ { 𝑧 } |
77 |
76
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → 𝑧 ∈ { 𝑧 } ) |
78 |
|
fvun2 |
⊢ ( ( ( 𝐹 ↾ 𝑆 ) Fn ( 𝑆 ∩ dom 𝐹 ) ∧ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } Fn { 𝑧 } ∧ ( ( ( 𝑆 ∩ dom 𝐹 ) ∩ { 𝑧 } ) = ∅ ∧ 𝑧 ∈ { 𝑧 } ) ) → ( ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ‘ 𝑧 ) = ( { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ‘ 𝑧 ) ) |
79 |
29 75 40 77 78
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ‘ 𝑧 ) = ( { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ‘ 𝑧 ) ) |
80 |
74 79
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( 𝐶 ‘ 𝑧 ) = ( { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ‘ 𝑧 ) ) |
81 |
4
|
reseq1i |
⊢ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
82 |
|
resundir |
⊢ ( ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( ( ( 𝐹 ↾ 𝑆 ) ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ( { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
83 |
81 82
|
eqtri |
⊢ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( ( ( 𝐹 ↾ 𝑆 ) ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ( { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
84 |
57 6
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑆 ) |
85 |
84
|
resabs1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( ( 𝐹 ↾ 𝑆 ) ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
86 |
|
predfrirr |
⊢ ( 𝑅 Fr 𝐴 → ¬ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
87 |
5 86
|
syl |
⊢ ( 𝜑 → ¬ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
88 |
87
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ¬ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
89 |
|
ressnop0 |
⊢ ( ¬ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) → ( { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ∅ ) |
90 |
88 89
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ∅ ) |
91 |
85 90
|
uneq12d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( ( ( 𝐹 ↾ 𝑆 ) ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ( { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ∅ ) ) |
92 |
|
un0 |
⊢ ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ∅ ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
93 |
91 92
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( ( ( 𝐹 ↾ 𝑆 ) ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ( { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
94 |
83 93
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
95 |
94
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( 𝑧 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
96 |
73 80 95
|
3eqtr4a |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( 𝐶 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
97 |
|
fveq2 |
⊢ ( 𝑤 = 𝑧 → ( 𝐶 ‘ 𝑤 ) = ( 𝐶 ‘ 𝑧 ) ) |
98 |
|
id |
⊢ ( 𝑤 = 𝑧 → 𝑤 = 𝑧 ) |
99 |
|
predeq3 |
⊢ ( 𝑤 = 𝑧 → Pred ( 𝑅 , 𝐴 , 𝑤 ) = Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
100 |
99
|
reseq2d |
⊢ ( 𝑤 = 𝑧 → ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) = ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
101 |
98 100
|
oveq12d |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) = ( 𝑧 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
102 |
97 101
|
eqeq12d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ↔ ( 𝐶 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) |
103 |
96 102
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( 𝑤 = 𝑧 → ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
104 |
72 103
|
jaod |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ∨ 𝑤 = 𝑧 ) → ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
105 |
11 104
|
syl5bi |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) → ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
106 |
105
|
3impia |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) → ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |