Step |
Hyp |
Ref |
Expression |
1 |
|
frrlem1.1 |
⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } |
2 |
|
fneq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 Fn 𝑥 ↔ 𝑔 Fn 𝑥 ) ) |
3 |
|
fveq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ) |
4 |
|
reseq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) |
5 |
4
|
oveq2d |
⊢ ( 𝑓 = 𝑔 → ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝑦 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) |
6 |
3 5
|
eqeq12d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝑔 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
7 |
6
|
ralbidv |
⊢ ( 𝑓 = 𝑔 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝑔 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
8 |
2 7
|
3anbi13d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ( 𝑔 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑔 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ) |
9 |
8
|
exbidv |
⊢ ( 𝑓 = 𝑔 → ( ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ∃ 𝑥 ( 𝑔 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑔 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ) |
10 |
|
fneq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑔 Fn 𝑥 ↔ 𝑔 Fn 𝑧 ) ) |
11 |
|
sseq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴 ) ) |
12 |
|
sseq2 |
⊢ ( 𝑥 = 𝑧 → ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ↔ Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑧 ) ) |
13 |
12
|
raleqbi1dv |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ↔ ∀ 𝑦 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑧 ) ) |
14 |
|
predeq3 |
⊢ ( 𝑦 = 𝑤 → Pred ( 𝑅 , 𝐴 , 𝑦 ) = Pred ( 𝑅 , 𝐴 , 𝑤 ) ) |
15 |
14
|
sseq1d |
⊢ ( 𝑦 = 𝑤 → ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑧 ↔ Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ) |
16 |
15
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑧 ↔ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) |
17 |
13 16
|
bitrdi |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ↔ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ) |
18 |
11 17
|
anbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ↔ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ) ) |
19 |
|
raleq |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑔 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝑧 ( 𝑔 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
20 |
|
fveq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑔 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑤 ) ) |
21 |
|
id |
⊢ ( 𝑦 = 𝑤 → 𝑦 = 𝑤 ) |
22 |
14
|
reseq2d |
⊢ ( 𝑦 = 𝑤 → ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) |
23 |
21 22
|
oveq12d |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
24 |
20 23
|
eqeq12d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑔 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝑔 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
25 |
24
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ 𝑧 ( 𝑔 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
26 |
19 25
|
bitrdi |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑔 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
27 |
10 18 26
|
3anbi123d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑔 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑔 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) ) |
28 |
27
|
cbvexvw |
⊢ ( ∃ 𝑥 ( 𝑔 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑔 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ∃ 𝑧 ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
29 |
9 28
|
bitrdi |
⊢ ( 𝑓 = 𝑔 → ( ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ∃ 𝑧 ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) ) |
30 |
29
|
cbvabv |
⊢ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } = { 𝑔 ∣ ∃ 𝑧 ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) } |
31 |
1 30
|
eqtri |
⊢ 𝐵 = { 𝑔 ∣ ∃ 𝑧 ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) } |