Step |
Hyp |
Ref |
Expression |
1 |
|
frrlem11.1 |
|
2 |
|
frrlem11.2 |
|
3 |
|
frrlem11.3 |
|
4 |
|
frrlem11.4 |
|
5 |
|
frrlem12.5 |
|
6 |
|
frrlem12.6 |
|
7 |
|
frrlem12.7 |
|
8 |
|
elun |
|
9 |
|
velsn |
|
10 |
9
|
orbi2i |
|
11 |
8 10
|
bitri |
|
12 |
|
elinel2 |
|
13 |
1
|
frrlem1 |
|
14 |
|
breq1 |
|
15 |
|
breq1 |
|
16 |
14 15
|
anbi12d |
|
17 |
16
|
imbi1d |
|
18 |
17
|
imbi2d |
|
19 |
18 3
|
chvarvv |
|
20 |
13 2 19
|
frrlem10 |
|
21 |
12 20
|
sylan2 |
|
22 |
21
|
adantlr |
|
23 |
4
|
fveq1i |
|
24 |
1 2 3
|
frrlem9 |
|
25 |
24
|
funresd |
|
26 |
|
dmres |
|
27 |
|
df-fn |
|
28 |
25 26 27
|
sylanblrc |
|
29 |
28
|
adantr |
|
30 |
29
|
adantr |
|
31 |
|
vex |
|
32 |
|
ovex |
|
33 |
31 32
|
fnsn |
|
34 |
33
|
a1i |
|
35 |
|
eldifn |
|
36 |
|
elinel2 |
|
37 |
35 36
|
nsyl |
|
38 |
|
disjsn |
|
39 |
37 38
|
sylibr |
|
40 |
39
|
adantl |
|
41 |
40
|
adantr |
|
42 |
|
simpr |
|
43 |
|
fvun1 |
|
44 |
30 34 41 42 43
|
syl112anc |
|
45 |
23 44
|
eqtrid |
|
46 |
|
elinel1 |
|
47 |
46
|
adantl |
|
48 |
47
|
fvresd |
|
49 |
45 48
|
eqtrd |
|
50 |
1 2 3 4
|
frrlem11 |
|
51 |
|
fnfun |
|
52 |
50 51
|
syl |
|
53 |
52
|
adantr |
|
54 |
|
ssun1 |
|
55 |
54 4
|
sseqtrri |
|
56 |
55
|
a1i |
|
57 |
|
eldifi |
|
58 |
57 7
|
sylan2 |
|
59 |
|
rspa |
|
60 |
58 46 59
|
syl2an |
|
61 |
1 2
|
frrlem8 |
|
62 |
12 61
|
syl |
|
63 |
62
|
adantl |
|
64 |
60 63
|
ssind |
|
65 |
64 26
|
sseqtrrdi |
|
66 |
|
fun2ssres |
|
67 |
53 56 65 66
|
syl3anc |
|
68 |
60
|
resabs1d |
|
69 |
67 68
|
eqtrd |
|
70 |
69
|
oveq2d |
|
71 |
22 49 70
|
3eqtr4d |
|
72 |
71
|
ex |
|
73 |
31 32
|
fvsn |
|
74 |
4
|
fveq1i |
|
75 |
33
|
a1i |
|
76 |
|
vsnid |
|
77 |
76
|
a1i |
|
78 |
|
fvun2 |
|
79 |
29 75 40 77 78
|
syl112anc |
|
80 |
74 79
|
eqtrid |
|
81 |
4
|
reseq1i |
|
82 |
|
resundir |
|
83 |
81 82
|
eqtri |
|
84 |
57 6
|
sylan2 |
|
85 |
84
|
resabs1d |
|
86 |
|
predfrirr |
|
87 |
5 86
|
syl |
|
88 |
87
|
adantr |
|
89 |
|
ressnop0 |
|
90 |
88 89
|
syl |
|
91 |
85 90
|
uneq12d |
|
92 |
|
un0 |
|
93 |
91 92
|
eqtrdi |
|
94 |
83 93
|
eqtrid |
|
95 |
94
|
oveq2d |
|
96 |
73 80 95
|
3eqtr4a |
|
97 |
|
fveq2 |
|
98 |
|
id |
|
99 |
|
predeq3 |
|
100 |
99
|
reseq2d |
|
101 |
98 100
|
oveq12d |
|
102 |
97 101
|
eqeq12d |
|
103 |
96 102
|
syl5ibrcom |
|
104 |
72 103
|
jaod |
|
105 |
11 104
|
syl5bi |
|
106 |
105
|
3impia |
|