Metamath Proof Explorer


Theorem predfrirr

Description: Given a well-founded relation, a class is not a member of its predecessor class. (Contributed by Scott Fenton, 22-Apr-2011)

Ref Expression
Assertion predfrirr RFrA¬XPredRAX

Proof

Step Hyp Ref Expression
1 frirr RFrAXA¬XRX
2 elpredg XAXAXPredRAXXRX
3 2 anidms XAXPredRAXXRX
4 3 notbid XA¬XPredRAX¬XRX
5 1 4 imbitrrid XARFrAXA¬XPredRAX
6 5 expd XARFrAXA¬XPredRAX
7 6 pm2.43b RFrAXA¬XPredRAX
8 predel XPredRAXXA
9 8 con3i ¬XA¬XPredRAX
10 7 9 pm2.61d1 RFrA¬XPredRAX