Metamath Proof Explorer


Theorem frrlem11

Description: Lemma for founded recursion. For the next several theorems we will be aiming to prove that dom F = A . To do this, we set up a function C that supposedly contains an element of A that is not in dom F and we show that the element must be in dom F . Our choice of what to restrict F to depends on if we assume partial ordering or Infinity. To begin with, we establish the functionhood of C . (Contributed by Scott Fenton, 7-Dec-2022)

Ref Expression
Hypotheses frrlem11.1 B = f | x f Fn x x A y x Pred R A y x y x f y = y G f Pred R A y
frrlem11.2 F = frecs R A G
frrlem11.3 φ g B h B x g u x h v u = v
frrlem11.4 C = F S z z G F Pred R A z
Assertion frrlem11 φ z A dom F C Fn S dom F z

Proof

Step Hyp Ref Expression
1 frrlem11.1 B = f | x f Fn x x A y x Pred R A y x y x f y = y G f Pred R A y
2 frrlem11.2 F = frecs R A G
3 frrlem11.3 φ g B h B x g u x h v u = v
4 frrlem11.4 C = F S z z G F Pred R A z
5 1 2 3 frrlem9 φ Fun F
6 funres Fun F Fun F S
7 5 6 syl φ Fun F S
8 dmres dom F S = S dom F
9 df-fn F S Fn S dom F Fun F S dom F S = S dom F
10 8 9 mpbiran2 F S Fn S dom F Fun F S
11 7 10 sylibr φ F S Fn S dom F
12 vex z V
13 ovex z G F Pred R A z V
14 12 13 fnsn z z G F Pred R A z Fn z
15 11 14 jctir φ F S Fn S dom F z z G F Pred R A z Fn z
16 eldifn z A dom F ¬ z dom F
17 elinel2 z S dom F z dom F
18 16 17 nsyl z A dom F ¬ z S dom F
19 disjsn S dom F z = ¬ z S dom F
20 18 19 sylibr z A dom F S dom F z =
21 fnun F S Fn S dom F z z G F Pred R A z Fn z S dom F z = F S z z G F Pred R A z Fn S dom F z
22 15 20 21 syl2an φ z A dom F F S z z G F Pred R A z Fn S dom F z
23 4 fneq1i C Fn S dom F z F S z z G F Pred R A z Fn S dom F z
24 22 23 sylibr φ z A dom F C Fn S dom F z