Metamath Proof Explorer


Theorem frrlem11

Description: Lemma for well-founded recursion. For the next several theorems we will be aiming to prove that dom F = A . To do this, we set up a function C that supposedly contains an element of A that is not in dom F and we show that the element must be in dom F . Our choice of what to restrict F to depends on if we assume partial orders or the axiom of infinity. To begin with, we establish the functionality of C . (Contributed by Scott Fenton, 7-Dec-2022)

Ref Expression
Hypotheses frrlem11.1 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) }
frrlem11.2 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 )
frrlem11.3 ( ( 𝜑 ∧ ( 𝑔𝐵𝐵 ) ) → ( ( 𝑥 𝑔 𝑢𝑥 𝑣 ) → 𝑢 = 𝑣 ) )
frrlem11.4 𝐶 = ( ( 𝐹𝑆 ) ∪ { ⟨ 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ } )
Assertion frrlem11 ( ( 𝜑𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → 𝐶 Fn ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) )

Proof

Step Hyp Ref Expression
1 frrlem11.1 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) }
2 frrlem11.2 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 )
3 frrlem11.3 ( ( 𝜑 ∧ ( 𝑔𝐵𝐵 ) ) → ( ( 𝑥 𝑔 𝑢𝑥 𝑣 ) → 𝑢 = 𝑣 ) )
4 frrlem11.4 𝐶 = ( ( 𝐹𝑆 ) ∪ { ⟨ 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ } )
5 1 2 3 frrlem9 ( 𝜑 → Fun 𝐹 )
6 5 funresd ( 𝜑 → Fun ( 𝐹𝑆 ) )
7 dmres dom ( 𝐹𝑆 ) = ( 𝑆 ∩ dom 𝐹 )
8 df-fn ( ( 𝐹𝑆 ) Fn ( 𝑆 ∩ dom 𝐹 ) ↔ ( Fun ( 𝐹𝑆 ) ∧ dom ( 𝐹𝑆 ) = ( 𝑆 ∩ dom 𝐹 ) ) )
9 7 8 mpbiran2 ( ( 𝐹𝑆 ) Fn ( 𝑆 ∩ dom 𝐹 ) ↔ Fun ( 𝐹𝑆 ) )
10 6 9 sylibr ( 𝜑 → ( 𝐹𝑆 ) Fn ( 𝑆 ∩ dom 𝐹 ) )
11 vex 𝑧 ∈ V
12 ovex ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∈ V
13 11 12 fnsn { ⟨ 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ } Fn { 𝑧 }
14 10 13 jctir ( 𝜑 → ( ( 𝐹𝑆 ) Fn ( 𝑆 ∩ dom 𝐹 ) ∧ { ⟨ 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ } Fn { 𝑧 } ) )
15 eldifn ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ¬ 𝑧 ∈ dom 𝐹 )
16 elinel2 ( 𝑧 ∈ ( 𝑆 ∩ dom 𝐹 ) → 𝑧 ∈ dom 𝐹 )
17 15 16 nsyl ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ¬ 𝑧 ∈ ( 𝑆 ∩ dom 𝐹 ) )
18 disjsn ( ( ( 𝑆 ∩ dom 𝐹 ) ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ ( 𝑆 ∩ dom 𝐹 ) )
19 17 18 sylibr ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ( ( 𝑆 ∩ dom 𝐹 ) ∩ { 𝑧 } ) = ∅ )
20 fnun ( ( ( ( 𝐹𝑆 ) Fn ( 𝑆 ∩ dom 𝐹 ) ∧ { ⟨ 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ } Fn { 𝑧 } ) ∧ ( ( 𝑆 ∩ dom 𝐹 ) ∩ { 𝑧 } ) = ∅ ) → ( ( 𝐹𝑆 ) ∪ { ⟨ 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ } ) Fn ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) )
21 14 19 20 syl2an ( ( 𝜑𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( ( 𝐹𝑆 ) ∪ { ⟨ 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ } ) Fn ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) )
22 4 fneq1i ( 𝐶 Fn ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ↔ ( ( 𝐹𝑆 ) ∪ { ⟨ 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ } ) Fn ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) )
23 21 22 sylibr ( ( 𝜑𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → 𝐶 Fn ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) )