Step |
Hyp |
Ref |
Expression |
1 |
|
frrlem11.1 |
⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } |
2 |
|
frrlem11.2 |
⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) |
3 |
|
frrlem11.3 |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) |
4 |
|
frrlem11.4 |
⊢ 𝐶 = ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) |
5 |
1 2 3
|
frrlem9 |
⊢ ( 𝜑 → Fun 𝐹 ) |
6 |
5
|
funresd |
⊢ ( 𝜑 → Fun ( 𝐹 ↾ 𝑆 ) ) |
7 |
|
dmres |
⊢ dom ( 𝐹 ↾ 𝑆 ) = ( 𝑆 ∩ dom 𝐹 ) |
8 |
|
df-fn |
⊢ ( ( 𝐹 ↾ 𝑆 ) Fn ( 𝑆 ∩ dom 𝐹 ) ↔ ( Fun ( 𝐹 ↾ 𝑆 ) ∧ dom ( 𝐹 ↾ 𝑆 ) = ( 𝑆 ∩ dom 𝐹 ) ) ) |
9 |
7 8
|
mpbiran2 |
⊢ ( ( 𝐹 ↾ 𝑆 ) Fn ( 𝑆 ∩ dom 𝐹 ) ↔ Fun ( 𝐹 ↾ 𝑆 ) ) |
10 |
6 9
|
sylibr |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝑆 ) Fn ( 𝑆 ∩ dom 𝐹 ) ) |
11 |
|
vex |
⊢ 𝑧 ∈ V |
12 |
|
ovex |
⊢ ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∈ V |
13 |
11 12
|
fnsn |
⊢ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } Fn { 𝑧 } |
14 |
10 13
|
jctir |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝑆 ) Fn ( 𝑆 ∩ dom 𝐹 ) ∧ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } Fn { 𝑧 } ) ) |
15 |
|
eldifn |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ¬ 𝑧 ∈ dom 𝐹 ) |
16 |
|
elinel2 |
⊢ ( 𝑧 ∈ ( 𝑆 ∩ dom 𝐹 ) → 𝑧 ∈ dom 𝐹 ) |
17 |
15 16
|
nsyl |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ¬ 𝑧 ∈ ( 𝑆 ∩ dom 𝐹 ) ) |
18 |
|
disjsn |
⊢ ( ( ( 𝑆 ∩ dom 𝐹 ) ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ ( 𝑆 ∩ dom 𝐹 ) ) |
19 |
17 18
|
sylibr |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ( ( 𝑆 ∩ dom 𝐹 ) ∩ { 𝑧 } ) = ∅ ) |
20 |
|
fnun |
⊢ ( ( ( ( 𝐹 ↾ 𝑆 ) Fn ( 𝑆 ∩ dom 𝐹 ) ∧ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } Fn { 𝑧 } ) ∧ ( ( 𝑆 ∩ dom 𝐹 ) ∩ { 𝑧 } ) = ∅ ) → ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) Fn ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) |
21 |
14 19 20
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) Fn ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) |
22 |
4
|
fneq1i |
⊢ ( 𝐶 Fn ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ↔ ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) Fn ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) |
23 |
21 22
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → 𝐶 Fn ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) |