| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsmsymgrfix.s |  |-  S = ( SymGrp ` N ) | 
						
							| 2 |  | gsmsymgrfix.b |  |-  B = ( Base ` S ) | 
						
							| 3 |  | gsmsymgreq.z |  |-  Z = ( SymGrp ` M ) | 
						
							| 4 |  | gsmsymgreq.p |  |-  P = ( Base ` Z ) | 
						
							| 5 |  | gsmsymgreq.i |  |-  I = ( N i^i M ) | 
						
							| 6 | 1 2 | symgbasf |  |-  ( G e. B -> G : N --> N ) | 
						
							| 7 | 6 | ffnd |  |-  ( G e. B -> G Fn N ) | 
						
							| 8 | 3 4 | symgbasf |  |-  ( K e. P -> K : M --> M ) | 
						
							| 9 | 8 | ffnd |  |-  ( K e. P -> K Fn M ) | 
						
							| 10 | 7 9 | anim12i |  |-  ( ( G e. B /\ K e. P ) -> ( G Fn N /\ K Fn M ) ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ( G e. B /\ K e. P ) /\ ( X e. I /\ ( G ` X ) = ( K ` X ) /\ A. n e. I ( F ` n ) = ( H ` n ) ) ) -> ( G Fn N /\ K Fn M ) ) | 
						
							| 12 | 5 | eleq2i |  |-  ( X e. I <-> X e. ( N i^i M ) ) | 
						
							| 13 | 12 | biimpi |  |-  ( X e. I -> X e. ( N i^i M ) ) | 
						
							| 14 | 13 | 3ad2ant1 |  |-  ( ( X e. I /\ ( G ` X ) = ( K ` X ) /\ A. n e. I ( F ` n ) = ( H ` n ) ) -> X e. ( N i^i M ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ( G e. B /\ K e. P ) /\ ( X e. I /\ ( G ` X ) = ( K ` X ) /\ A. n e. I ( F ` n ) = ( H ` n ) ) ) -> X e. ( N i^i M ) ) | 
						
							| 16 |  | simpr2 |  |-  ( ( ( G e. B /\ K e. P ) /\ ( X e. I /\ ( G ` X ) = ( K ` X ) /\ A. n e. I ( F ` n ) = ( H ` n ) ) ) -> ( G ` X ) = ( K ` X ) ) | 
						
							| 17 | 1 2 | symgbasf1o |  |-  ( G e. B -> G : N -1-1-onto-> N ) | 
						
							| 18 |  | dff1o5 |  |-  ( G : N -1-1-onto-> N <-> ( G : N -1-1-> N /\ ran G = N ) ) | 
						
							| 19 |  | eqcom |  |-  ( ran G = N <-> N = ran G ) | 
						
							| 20 | 19 | biimpi |  |-  ( ran G = N -> N = ran G ) | 
						
							| 21 | 18 20 | simplbiim |  |-  ( G : N -1-1-onto-> N -> N = ran G ) | 
						
							| 22 | 17 21 | syl |  |-  ( G e. B -> N = ran G ) | 
						
							| 23 | 3 4 | symgbasf1o |  |-  ( K e. P -> K : M -1-1-onto-> M ) | 
						
							| 24 |  | dff1o5 |  |-  ( K : M -1-1-onto-> M <-> ( K : M -1-1-> M /\ ran K = M ) ) | 
						
							| 25 |  | eqcom |  |-  ( ran K = M <-> M = ran K ) | 
						
							| 26 | 25 | biimpi |  |-  ( ran K = M -> M = ran K ) | 
						
							| 27 | 24 26 | simplbiim |  |-  ( K : M -1-1-onto-> M -> M = ran K ) | 
						
							| 28 | 23 27 | syl |  |-  ( K e. P -> M = ran K ) | 
						
							| 29 | 22 28 | ineqan12d |  |-  ( ( G e. B /\ K e. P ) -> ( N i^i M ) = ( ran G i^i ran K ) ) | 
						
							| 30 | 5 29 | eqtrid |  |-  ( ( G e. B /\ K e. P ) -> I = ( ran G i^i ran K ) ) | 
						
							| 31 | 30 | raleqdv |  |-  ( ( G e. B /\ K e. P ) -> ( A. n e. I ( F ` n ) = ( H ` n ) <-> A. n e. ( ran G i^i ran K ) ( F ` n ) = ( H ` n ) ) ) | 
						
							| 32 | 31 | biimpcd |  |-  ( A. n e. I ( F ` n ) = ( H ` n ) -> ( ( G e. B /\ K e. P ) -> A. n e. ( ran G i^i ran K ) ( F ` n ) = ( H ` n ) ) ) | 
						
							| 33 | 32 | 3ad2ant3 |  |-  ( ( X e. I /\ ( G ` X ) = ( K ` X ) /\ A. n e. I ( F ` n ) = ( H ` n ) ) -> ( ( G e. B /\ K e. P ) -> A. n e. ( ran G i^i ran K ) ( F ` n ) = ( H ` n ) ) ) | 
						
							| 34 | 33 | impcom |  |-  ( ( ( G e. B /\ K e. P ) /\ ( X e. I /\ ( G ` X ) = ( K ` X ) /\ A. n e. I ( F ` n ) = ( H ` n ) ) ) -> A. n e. ( ran G i^i ran K ) ( F ` n ) = ( H ` n ) ) | 
						
							| 35 | 15 16 34 | 3jca |  |-  ( ( ( G e. B /\ K e. P ) /\ ( X e. I /\ ( G ` X ) = ( K ` X ) /\ A. n e. I ( F ` n ) = ( H ` n ) ) ) -> ( X e. ( N i^i M ) /\ ( G ` X ) = ( K ` X ) /\ A. n e. ( ran G i^i ran K ) ( F ` n ) = ( H ` n ) ) ) | 
						
							| 36 |  | fvcofneq |  |-  ( ( G Fn N /\ K Fn M ) -> ( ( X e. ( N i^i M ) /\ ( G ` X ) = ( K ` X ) /\ A. n e. ( ran G i^i ran K ) ( F ` n ) = ( H ` n ) ) -> ( ( F o. G ) ` X ) = ( ( H o. K ) ` X ) ) ) | 
						
							| 37 | 11 35 36 | sylc |  |-  ( ( ( G e. B /\ K e. P ) /\ ( X e. I /\ ( G ` X ) = ( K ` X ) /\ A. n e. I ( F ` n ) = ( H ` n ) ) ) -> ( ( F o. G ) ` X ) = ( ( H o. K ) ` X ) ) | 
						
							| 38 | 37 | ex |  |-  ( ( G e. B /\ K e. P ) -> ( ( X e. I /\ ( G ` X ) = ( K ` X ) /\ A. n e. I ( F ` n ) = ( H ` n ) ) -> ( ( F o. G ) ` X ) = ( ( H o. K ) ` X ) ) ) |