| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsmsymgrfix.s |  | 
						
							| 2 |  | gsmsymgrfix.b |  | 
						
							| 3 |  | gsmsymgreq.z |  | 
						
							| 4 |  | gsmsymgreq.p |  | 
						
							| 5 |  | gsmsymgreq.i |  | 
						
							| 6 | 1 2 | symgbasf |  | 
						
							| 7 | 6 | ffnd |  | 
						
							| 8 | 3 4 | symgbasf |  | 
						
							| 9 | 8 | ffnd |  | 
						
							| 10 | 7 9 | anim12i |  | 
						
							| 11 | 10 | adantr |  | 
						
							| 12 | 5 | eleq2i |  | 
						
							| 13 | 12 | biimpi |  | 
						
							| 14 | 13 | 3ad2ant1 |  | 
						
							| 15 | 14 | adantl |  | 
						
							| 16 |  | simpr2 |  | 
						
							| 17 | 1 2 | symgbasf1o |  | 
						
							| 18 |  | dff1o5 |  | 
						
							| 19 |  | eqcom |  | 
						
							| 20 | 19 | biimpi |  | 
						
							| 21 | 18 20 | simplbiim |  | 
						
							| 22 | 17 21 | syl |  | 
						
							| 23 | 3 4 | symgbasf1o |  | 
						
							| 24 |  | dff1o5 |  | 
						
							| 25 |  | eqcom |  | 
						
							| 26 | 25 | biimpi |  | 
						
							| 27 | 24 26 | simplbiim |  | 
						
							| 28 | 23 27 | syl |  | 
						
							| 29 | 22 28 | ineqan12d |  | 
						
							| 30 | 5 29 | eqtrid |  | 
						
							| 31 | 30 | raleqdv |  | 
						
							| 32 | 31 | biimpcd |  | 
						
							| 33 | 32 | 3ad2ant3 |  | 
						
							| 34 | 33 | impcom |  | 
						
							| 35 | 15 16 34 | 3jca |  | 
						
							| 36 |  | fvcofneq |  | 
						
							| 37 | 11 35 36 | sylc |  | 
						
							| 38 | 37 | ex |  |