| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsmsymgrfix.s |  | 
						
							| 2 |  | gsmsymgrfix.b |  | 
						
							| 3 |  | gsmsymgreq.z |  | 
						
							| 4 |  | gsmsymgreq.p |  | 
						
							| 5 |  | gsmsymgreq.i |  | 
						
							| 6 |  | simpr |  | 
						
							| 7 |  | simpr |  | 
						
							| 8 | 6 7 | anim12i |  | 
						
							| 9 | 8 | 3adant3 |  | 
						
							| 10 | 9 | adantl |  | 
						
							| 11 | 10 | adantr |  | 
						
							| 12 |  | simpll3 |  | 
						
							| 13 |  | simpr |  | 
						
							| 14 | 13 | adantl |  | 
						
							| 15 |  | simprl |  | 
						
							| 16 | 12 14 15 | 3jca |  | 
						
							| 17 | 1 2 3 4 5 | fvcosymgeq |  | 
						
							| 18 | 11 16 17 | sylc |  | 
						
							| 19 |  | simpl1 |  | 
						
							| 20 |  | simpr1l |  | 
						
							| 21 |  | simpr1r |  | 
						
							| 22 | 19 20 21 | 3jca |  | 
						
							| 23 | 22 | adantr |  | 
						
							| 24 | 1 2 | gsumccatsymgsn |  | 
						
							| 25 | 23 24 | syl |  | 
						
							| 26 | 25 | fveq1d |  | 
						
							| 27 |  | simpl2 |  | 
						
							| 28 |  | simpr2l |  | 
						
							| 29 |  | simpr2r |  | 
						
							| 30 | 27 28 29 | 3jca |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 | 3 4 | gsumccatsymgsn |  | 
						
							| 33 | 31 32 | syl |  | 
						
							| 34 | 33 | fveq1d |  | 
						
							| 35 | 18 26 34 | 3eqtr4d |  | 
						
							| 36 | 35 | ex |  |