| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvresex.1 |
|- A e. _V |
| 2 |
|
ssv |
|- A C_ _V |
| 3 |
|
resmpt |
|- ( A C_ _V -> ( ( z e. _V |-> ( F ` z ) ) |` A ) = ( z e. A |-> ( F ` z ) ) ) |
| 4 |
2 3
|
ax-mp |
|- ( ( z e. _V |-> ( F ` z ) ) |` A ) = ( z e. A |-> ( F ` z ) ) |
| 5 |
4
|
fveq1i |
|- ( ( ( z e. _V |-> ( F ` z ) ) |` A ) ` x ) = ( ( z e. A |-> ( F ` z ) ) ` x ) |
| 6 |
|
fveq2 |
|- ( z = x -> ( F ` z ) = ( F ` x ) ) |
| 7 |
|
eqid |
|- ( z e. _V |-> ( F ` z ) ) = ( z e. _V |-> ( F ` z ) ) |
| 8 |
|
fvex |
|- ( F ` x ) e. _V |
| 9 |
6 7 8
|
fvmpt |
|- ( x e. _V -> ( ( z e. _V |-> ( F ` z ) ) ` x ) = ( F ` x ) ) |
| 10 |
9
|
elv |
|- ( ( z e. _V |-> ( F ` z ) ) ` x ) = ( F ` x ) |
| 11 |
|
fveqres |
|- ( ( ( z e. _V |-> ( F ` z ) ) ` x ) = ( F ` x ) -> ( ( ( z e. _V |-> ( F ` z ) ) |` A ) ` x ) = ( ( F |` A ) ` x ) ) |
| 12 |
10 11
|
ax-mp |
|- ( ( ( z e. _V |-> ( F ` z ) ) |` A ) ` x ) = ( ( F |` A ) ` x ) |
| 13 |
5 12
|
eqtr3i |
|- ( ( z e. A |-> ( F ` z ) ) ` x ) = ( ( F |` A ) ` x ) |
| 14 |
13
|
eqeq2i |
|- ( y = ( ( z e. A |-> ( F ` z ) ) ` x ) <-> y = ( ( F |` A ) ` x ) ) |
| 15 |
14
|
exbii |
|- ( E. x y = ( ( z e. A |-> ( F ` z ) ) ` x ) <-> E. x y = ( ( F |` A ) ` x ) ) |
| 16 |
15
|
abbii |
|- { y | E. x y = ( ( z e. A |-> ( F ` z ) ) ` x ) } = { y | E. x y = ( ( F |` A ) ` x ) } |
| 17 |
1
|
mptex |
|- ( z e. A |-> ( F ` z ) ) e. _V |
| 18 |
17
|
fvclex |
|- { y | E. x y = ( ( z e. A |-> ( F ` z ) ) ` x ) } e. _V |
| 19 |
16 18
|
eqeltrri |
|- { y | E. x y = ( ( F |` A ) ` x ) } e. _V |