| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfzoel2 |
|- ( B e. ( C ..^ D ) -> D e. ZZ ) |
| 2 |
|
elfzoel1 |
|- ( B e. ( C ..^ D ) -> C e. ZZ ) |
| 3 |
1 2
|
zsubcld |
|- ( B e. ( C ..^ D ) -> ( D - C ) e. ZZ ) |
| 4 |
|
elfzoelz |
|- ( A e. ( C ..^ D ) -> A e. ZZ ) |
| 5 |
|
elfzoelz |
|- ( B e. ( C ..^ D ) -> B e. ZZ ) |
| 6 |
|
zsubcl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A - B ) e. ZZ ) |
| 7 |
4 5 6
|
syl2an |
|- ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( A - B ) e. ZZ ) |
| 8 |
|
dvdsabsb |
|- ( ( ( D - C ) e. ZZ /\ ( A - B ) e. ZZ ) -> ( ( D - C ) || ( A - B ) <-> ( D - C ) || ( abs ` ( A - B ) ) ) ) |
| 9 |
3 7 8
|
syl2an2 |
|- ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( ( D - C ) || ( A - B ) <-> ( D - C ) || ( abs ` ( A - B ) ) ) ) |
| 10 |
|
fzomaxdif |
|- ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( abs ` ( A - B ) ) e. ( 0 ..^ ( D - C ) ) ) |
| 11 |
|
fzo0dvdseq |
|- ( ( abs ` ( A - B ) ) e. ( 0 ..^ ( D - C ) ) -> ( ( D - C ) || ( abs ` ( A - B ) ) <-> ( abs ` ( A - B ) ) = 0 ) ) |
| 12 |
10 11
|
syl |
|- ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( ( D - C ) || ( abs ` ( A - B ) ) <-> ( abs ` ( A - B ) ) = 0 ) ) |
| 13 |
9 12
|
bitrd |
|- ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( ( D - C ) || ( A - B ) <-> ( abs ` ( A - B ) ) = 0 ) ) |
| 14 |
4
|
zcnd |
|- ( A e. ( C ..^ D ) -> A e. CC ) |
| 15 |
5
|
zcnd |
|- ( B e. ( C ..^ D ) -> B e. CC ) |
| 16 |
|
subcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
| 17 |
14 15 16
|
syl2an |
|- ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( A - B ) e. CC ) |
| 18 |
17
|
abs00ad |
|- ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( ( abs ` ( A - B ) ) = 0 <-> ( A - B ) = 0 ) ) |
| 19 |
|
subeq0 |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) = 0 <-> A = B ) ) |
| 20 |
14 15 19
|
syl2an |
|- ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( ( A - B ) = 0 <-> A = B ) ) |
| 21 |
18 20
|
bitrd |
|- ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( ( abs ` ( A - B ) ) = 0 <-> A = B ) ) |
| 22 |
13 21
|
bitrd |
|- ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( ( D - C ) || ( A - B ) <-> A = B ) ) |