Metamath Proof Explorer


Theorem gg-rmulccn

Description: Multiplication by a real constant is a continuous function. (Contributed by Thierry Arnoux, 23-May-2017) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)

Ref Expression
Hypotheses gg-rmulccn.1
|- J = ( topGen ` ran (,) )
gg-rmulccn.2
|- ( ph -> C e. RR )
Assertion gg-rmulccn
|- ( ph -> ( x e. RR |-> ( x x. C ) ) e. ( J Cn J ) )

Proof

Step Hyp Ref Expression
1 gg-rmulccn.1
 |-  J = ( topGen ` ran (,) )
2 gg-rmulccn.2
 |-  ( ph -> C e. RR )
3 eqid
 |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld )
4 3 cnfldtopon
 |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC )
5 4 a1i
 |-  ( ph -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) )
6 5 cnmptid
 |-  ( ph -> ( x e. CC |-> x ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) )
7 2 recnd
 |-  ( ph -> C e. CC )
8 5 5 7 cnmptc
 |-  ( ph -> ( x e. CC |-> C ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) )
9 3 mpomulcn
 |-  ( y e. CC , z e. CC |-> ( y x. z ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) )
10 9 a1i
 |-  ( ph -> ( y e. CC , z e. CC |-> ( y x. z ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) )
11 oveq12
 |-  ( ( y = x /\ z = C ) -> ( y x. z ) = ( x x. C ) )
12 5 6 8 5 5 10 11 cnmpt12
 |-  ( ph -> ( x e. CC |-> ( x x. C ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) )
13 ax-resscn
 |-  RR C_ CC
14 unicntop
 |-  CC = U. ( TopOpen ` CCfld )
15 14 cnrest
 |-  ( ( ( x e. CC |-> ( x x. C ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) /\ RR C_ CC ) -> ( ( x e. CC |-> ( x x. C ) ) |` RR ) e. ( ( ( TopOpen ` CCfld ) |`t RR ) Cn ( TopOpen ` CCfld ) ) )
16 12 13 15 sylancl
 |-  ( ph -> ( ( x e. CC |-> ( x x. C ) ) |` RR ) e. ( ( ( TopOpen ` CCfld ) |`t RR ) Cn ( TopOpen ` CCfld ) ) )
17 simpr
 |-  ( ( ph /\ x e. CC ) -> x e. CC )
18 7 adantr
 |-  ( ( ph /\ x e. CC ) -> C e. CC )
19 17 18 mulcld
 |-  ( ( ph /\ x e. CC ) -> ( x x. C ) e. CC )
20 19 ralrimiva
 |-  ( ph -> A. x e. CC ( x x. C ) e. CC )
21 eqid
 |-  ( x e. CC |-> ( x x. C ) ) = ( x e. CC |-> ( x x. C ) )
22 21 fnmpt
 |-  ( A. x e. CC ( x x. C ) e. CC -> ( x e. CC |-> ( x x. C ) ) Fn CC )
23 20 22 syl
 |-  ( ph -> ( x e. CC |-> ( x x. C ) ) Fn CC )
24 13 a1i
 |-  ( ph -> RR C_ CC )
25 23 24 fnssresd
 |-  ( ph -> ( ( x e. CC |-> ( x x. C ) ) |` RR ) Fn RR )
26 simpr
 |-  ( ( ph /\ w e. RR ) -> w e. RR )
27 oveq1
 |-  ( x = w -> ( x x. C ) = ( w x. C ) )
28 resmpt
 |-  ( RR C_ CC -> ( ( x e. CC |-> ( x x. C ) ) |` RR ) = ( x e. RR |-> ( x x. C ) ) )
29 13 28 ax-mp
 |-  ( ( x e. CC |-> ( x x. C ) ) |` RR ) = ( x e. RR |-> ( x x. C ) )
30 ovex
 |-  ( w x. C ) e. _V
31 27 29 30 fvmpt
 |-  ( w e. RR -> ( ( ( x e. CC |-> ( x x. C ) ) |` RR ) ` w ) = ( w x. C ) )
32 26 31 syl
 |-  ( ( ph /\ w e. RR ) -> ( ( ( x e. CC |-> ( x x. C ) ) |` RR ) ` w ) = ( w x. C ) )
33 2 adantr
 |-  ( ( ph /\ w e. RR ) -> C e. RR )
34 26 33 remulcld
 |-  ( ( ph /\ w e. RR ) -> ( w x. C ) e. RR )
35 32 34 eqeltrd
 |-  ( ( ph /\ w e. RR ) -> ( ( ( x e. CC |-> ( x x. C ) ) |` RR ) ` w ) e. RR )
36 35 ralrimiva
 |-  ( ph -> A. w e. RR ( ( ( x e. CC |-> ( x x. C ) ) |` RR ) ` w ) e. RR )
37 fnfvrnss
 |-  ( ( ( ( x e. CC |-> ( x x. C ) ) |` RR ) Fn RR /\ A. w e. RR ( ( ( x e. CC |-> ( x x. C ) ) |` RR ) ` w ) e. RR ) -> ran ( ( x e. CC |-> ( x x. C ) ) |` RR ) C_ RR )
38 25 36 37 syl2anc
 |-  ( ph -> ran ( ( x e. CC |-> ( x x. C ) ) |` RR ) C_ RR )
39 cnrest2
 |-  ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( ( x e. CC |-> ( x x. C ) ) |` RR ) C_ RR /\ RR C_ CC ) -> ( ( ( x e. CC |-> ( x x. C ) ) |` RR ) e. ( ( ( TopOpen ` CCfld ) |`t RR ) Cn ( TopOpen ` CCfld ) ) <-> ( ( x e. CC |-> ( x x. C ) ) |` RR ) e. ( ( ( TopOpen ` CCfld ) |`t RR ) Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) )
40 4 38 24 39 mp3an2i
 |-  ( ph -> ( ( ( x e. CC |-> ( x x. C ) ) |` RR ) e. ( ( ( TopOpen ` CCfld ) |`t RR ) Cn ( TopOpen ` CCfld ) ) <-> ( ( x e. CC |-> ( x x. C ) ) |` RR ) e. ( ( ( TopOpen ` CCfld ) |`t RR ) Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) )
41 16 40 mpbid
 |-  ( ph -> ( ( x e. CC |-> ( x x. C ) ) |` RR ) e. ( ( ( TopOpen ` CCfld ) |`t RR ) Cn ( ( TopOpen ` CCfld ) |`t RR ) ) )
42 3 tgioo2
 |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR )
43 1 42 eqtri
 |-  J = ( ( TopOpen ` CCfld ) |`t RR )
44 43 43 oveq12i
 |-  ( J Cn J ) = ( ( ( TopOpen ` CCfld ) |`t RR ) Cn ( ( TopOpen ` CCfld ) |`t RR ) )
45 44 eqcomi
 |-  ( ( ( TopOpen ` CCfld ) |`t RR ) Cn ( ( TopOpen ` CCfld ) |`t RR ) ) = ( J Cn J )
46 41 29 45 3eltr3g
 |-  ( ph -> ( x e. RR |-> ( x x. C ) ) e. ( J Cn J ) )