Metamath Proof Explorer


Theorem gsumsubg

Description: The group sum in a subgroup is the same as the group sum. (Contributed by Thierry Arnoux, 28-May-2023)

Ref Expression
Hypotheses gsumsubg.1
|- H = ( G |`s B )
gsumsubg.a
|- ( ph -> A e. V )
gsumsubg.f
|- ( ph -> F : A --> B )
gsumsubg.b
|- ( ph -> B e. ( SubGrp ` G ) )
Assertion gsumsubg
|- ( ph -> ( G gsum F ) = ( H gsum F ) )

Proof

Step Hyp Ref Expression
1 gsumsubg.1
 |-  H = ( G |`s B )
2 gsumsubg.a
 |-  ( ph -> A e. V )
3 gsumsubg.f
 |-  ( ph -> F : A --> B )
4 gsumsubg.b
 |-  ( ph -> B e. ( SubGrp ` G ) )
5 eqid
 |-  ( Base ` G ) = ( Base ` G )
6 eqid
 |-  ( +g ` G ) = ( +g ` G )
7 4 elfvexd
 |-  ( ph -> G e. _V )
8 5 subgss
 |-  ( B e. ( SubGrp ` G ) -> B C_ ( Base ` G ) )
9 4 8 syl
 |-  ( ph -> B C_ ( Base ` G ) )
10 eqid
 |-  ( 0g ` G ) = ( 0g ` G )
11 10 subg0cl
 |-  ( B e. ( SubGrp ` G ) -> ( 0g ` G ) e. B )
12 4 11 syl
 |-  ( ph -> ( 0g ` G ) e. B )
13 subgrcl
 |-  ( B e. ( SubGrp ` G ) -> G e. Grp )
14 4 13 syl
 |-  ( ph -> G e. Grp )
15 5 6 10 grplid
 |-  ( ( G e. Grp /\ x e. ( Base ` G ) ) -> ( ( 0g ` G ) ( +g ` G ) x ) = x )
16 5 6 10 grprid
 |-  ( ( G e. Grp /\ x e. ( Base ` G ) ) -> ( x ( +g ` G ) ( 0g ` G ) ) = x )
17 15 16 jca
 |-  ( ( G e. Grp /\ x e. ( Base ` G ) ) -> ( ( ( 0g ` G ) ( +g ` G ) x ) = x /\ ( x ( +g ` G ) ( 0g ` G ) ) = x ) )
18 14 17 sylan
 |-  ( ( ph /\ x e. ( Base ` G ) ) -> ( ( ( 0g ` G ) ( +g ` G ) x ) = x /\ ( x ( +g ` G ) ( 0g ` G ) ) = x ) )
19 5 6 1 7 2 9 3 12 18 gsumress
 |-  ( ph -> ( G gsum F ) = ( H gsum F ) )