Step |
Hyp |
Ref |
Expression |
1 |
|
gsumsubg.1 |
|- H = ( G |`s B ) |
2 |
|
gsumsubg.a |
|- ( ph -> A e. V ) |
3 |
|
gsumsubg.f |
|- ( ph -> F : A --> B ) |
4 |
|
gsumsubg.b |
|- ( ph -> B e. ( SubGrp ` G ) ) |
5 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
6 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
7 |
4
|
elfvexd |
|- ( ph -> G e. _V ) |
8 |
5
|
subgss |
|- ( B e. ( SubGrp ` G ) -> B C_ ( Base ` G ) ) |
9 |
4 8
|
syl |
|- ( ph -> B C_ ( Base ` G ) ) |
10 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
11 |
10
|
subg0cl |
|- ( B e. ( SubGrp ` G ) -> ( 0g ` G ) e. B ) |
12 |
4 11
|
syl |
|- ( ph -> ( 0g ` G ) e. B ) |
13 |
|
subgrcl |
|- ( B e. ( SubGrp ` G ) -> G e. Grp ) |
14 |
4 13
|
syl |
|- ( ph -> G e. Grp ) |
15 |
5 6 10
|
grplid |
|- ( ( G e. Grp /\ x e. ( Base ` G ) ) -> ( ( 0g ` G ) ( +g ` G ) x ) = x ) |
16 |
5 6 10
|
grprid |
|- ( ( G e. Grp /\ x e. ( Base ` G ) ) -> ( x ( +g ` G ) ( 0g ` G ) ) = x ) |
17 |
15 16
|
jca |
|- ( ( G e. Grp /\ x e. ( Base ` G ) ) -> ( ( ( 0g ` G ) ( +g ` G ) x ) = x /\ ( x ( +g ` G ) ( 0g ` G ) ) = x ) ) |
18 |
14 17
|
sylan |
|- ( ( ph /\ x e. ( Base ` G ) ) -> ( ( ( 0g ` G ) ( +g ` G ) x ) = x /\ ( x ( +g ` G ) ( 0g ` G ) ) = x ) ) |
19 |
5 6 1 7 2 9 3 12 18
|
gsumress |
|- ( ph -> ( G gsum F ) = ( H gsum F ) ) |