| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumsubg.1 |
|- H = ( G |`s B ) |
| 2 |
|
gsumsubg.a |
|- ( ph -> A e. V ) |
| 3 |
|
gsumsubg.f |
|- ( ph -> F : A --> B ) |
| 4 |
|
gsumsubg.b |
|- ( ph -> B e. ( SubGrp ` G ) ) |
| 5 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 6 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 7 |
4
|
elfvexd |
|- ( ph -> G e. _V ) |
| 8 |
5
|
subgss |
|- ( B e. ( SubGrp ` G ) -> B C_ ( Base ` G ) ) |
| 9 |
4 8
|
syl |
|- ( ph -> B C_ ( Base ` G ) ) |
| 10 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 11 |
10
|
subg0cl |
|- ( B e. ( SubGrp ` G ) -> ( 0g ` G ) e. B ) |
| 12 |
4 11
|
syl |
|- ( ph -> ( 0g ` G ) e. B ) |
| 13 |
|
subgrcl |
|- ( B e. ( SubGrp ` G ) -> G e. Grp ) |
| 14 |
4 13
|
syl |
|- ( ph -> G e. Grp ) |
| 15 |
5 6 10
|
grplid |
|- ( ( G e. Grp /\ x e. ( Base ` G ) ) -> ( ( 0g ` G ) ( +g ` G ) x ) = x ) |
| 16 |
5 6 10
|
grprid |
|- ( ( G e. Grp /\ x e. ( Base ` G ) ) -> ( x ( +g ` G ) ( 0g ` G ) ) = x ) |
| 17 |
15 16
|
jca |
|- ( ( G e. Grp /\ x e. ( Base ` G ) ) -> ( ( ( 0g ` G ) ( +g ` G ) x ) = x /\ ( x ( +g ` G ) ( 0g ` G ) ) = x ) ) |
| 18 |
14 17
|
sylan |
|- ( ( ph /\ x e. ( Base ` G ) ) -> ( ( ( 0g ` G ) ( +g ` G ) x ) = x /\ ( x ( +g ` G ) ( 0g ` G ) ) = x ) ) |
| 19 |
5 6 1 7 2 9 3 12 18
|
gsumress |
|- ( ph -> ( G gsum F ) = ( H gsum F ) ) |