Metamath Proof Explorer


Theorem gsumsubg

Description: The group sum in a subgroup is the same as the group sum. (Contributed by Thierry Arnoux, 28-May-2023)

Ref Expression
Hypotheses gsumsubg.1 H = G 𝑠 B
gsumsubg.a φ A V
gsumsubg.f φ F : A B
gsumsubg.b φ B SubGrp G
Assertion gsumsubg φ G F = H F

Proof

Step Hyp Ref Expression
1 gsumsubg.1 H = G 𝑠 B
2 gsumsubg.a φ A V
3 gsumsubg.f φ F : A B
4 gsumsubg.b φ B SubGrp G
5 eqid Base G = Base G
6 eqid + G = + G
7 4 elfvexd φ G V
8 5 subgss B SubGrp G B Base G
9 4 8 syl φ B Base G
10 eqid 0 G = 0 G
11 10 subg0cl B SubGrp G 0 G B
12 4 11 syl φ 0 G B
13 subgrcl B SubGrp G G Grp
14 4 13 syl φ G Grp
15 5 6 10 grplid G Grp x Base G 0 G + G x = x
16 5 6 10 grprid G Grp x Base G x + G 0 G = x
17 15 16 jca G Grp x Base G 0 G + G x = x x + G 0 G = x
18 14 17 sylan φ x Base G 0 G + G x = x x + G 0 G = x
19 5 6 1 7 2 9 3 12 18 gsumress φ G F = H F