| Step |
Hyp |
Ref |
Expression |
| 1 |
|
h1de2.1 |
|- A e. ~H |
| 2 |
|
h1de2.2 |
|- B e. ~H |
| 3 |
2 2
|
hicli |
|- ( B .ih B ) e. CC |
| 4 |
3 1
|
hvmulcli |
|- ( ( B .ih B ) .h A ) e. ~H |
| 5 |
1 2
|
hicli |
|- ( A .ih B ) e. CC |
| 6 |
5 2
|
hvmulcli |
|- ( ( A .ih B ) .h B ) e. ~H |
| 7 |
|
his2sub |
|- ( ( ( ( B .ih B ) .h A ) e. ~H /\ ( ( A .ih B ) .h B ) e. ~H /\ A e. ~H ) -> ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih A ) = ( ( ( ( B .ih B ) .h A ) .ih A ) - ( ( ( A .ih B ) .h B ) .ih A ) ) ) |
| 8 |
4 6 1 7
|
mp3an |
|- ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih A ) = ( ( ( ( B .ih B ) .h A ) .ih A ) - ( ( ( A .ih B ) .h B ) .ih A ) ) |
| 9 |
|
ax-his3 |
|- ( ( ( B .ih B ) e. CC /\ A e. ~H /\ A e. ~H ) -> ( ( ( B .ih B ) .h A ) .ih A ) = ( ( B .ih B ) x. ( A .ih A ) ) ) |
| 10 |
3 1 1 9
|
mp3an |
|- ( ( ( B .ih B ) .h A ) .ih A ) = ( ( B .ih B ) x. ( A .ih A ) ) |
| 11 |
1 1
|
hicli |
|- ( A .ih A ) e. CC |
| 12 |
3 11
|
mulcomi |
|- ( ( B .ih B ) x. ( A .ih A ) ) = ( ( A .ih A ) x. ( B .ih B ) ) |
| 13 |
10 12
|
eqtri |
|- ( ( ( B .ih B ) .h A ) .ih A ) = ( ( A .ih A ) x. ( B .ih B ) ) |
| 14 |
|
ax-his3 |
|- ( ( ( A .ih B ) e. CC /\ B e. ~H /\ A e. ~H ) -> ( ( ( A .ih B ) .h B ) .ih A ) = ( ( A .ih B ) x. ( B .ih A ) ) ) |
| 15 |
5 2 1 14
|
mp3an |
|- ( ( ( A .ih B ) .h B ) .ih A ) = ( ( A .ih B ) x. ( B .ih A ) ) |
| 16 |
13 15
|
oveq12i |
|- ( ( ( ( B .ih B ) .h A ) .ih A ) - ( ( ( A .ih B ) .h B ) .ih A ) ) = ( ( ( A .ih A ) x. ( B .ih B ) ) - ( ( A .ih B ) x. ( B .ih A ) ) ) |
| 17 |
8 16
|
eqtr2i |
|- ( ( ( A .ih A ) x. ( B .ih B ) ) - ( ( A .ih B ) x. ( B .ih A ) ) ) = ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih A ) |
| 18 |
|
his2sub |
|- ( ( ( ( B .ih B ) .h A ) e. ~H /\ ( ( A .ih B ) .h B ) e. ~H /\ B e. ~H ) -> ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih B ) = ( ( ( ( B .ih B ) .h A ) .ih B ) - ( ( ( A .ih B ) .h B ) .ih B ) ) ) |
| 19 |
4 6 2 18
|
mp3an |
|- ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih B ) = ( ( ( ( B .ih B ) .h A ) .ih B ) - ( ( ( A .ih B ) .h B ) .ih B ) ) |
| 20 |
3 5
|
mulcomi |
|- ( ( B .ih B ) x. ( A .ih B ) ) = ( ( A .ih B ) x. ( B .ih B ) ) |
| 21 |
|
ax-his3 |
|- ( ( ( B .ih B ) e. CC /\ A e. ~H /\ B e. ~H ) -> ( ( ( B .ih B ) .h A ) .ih B ) = ( ( B .ih B ) x. ( A .ih B ) ) ) |
| 22 |
3 1 2 21
|
mp3an |
|- ( ( ( B .ih B ) .h A ) .ih B ) = ( ( B .ih B ) x. ( A .ih B ) ) |
| 23 |
|
ax-his3 |
|- ( ( ( A .ih B ) e. CC /\ B e. ~H /\ B e. ~H ) -> ( ( ( A .ih B ) .h B ) .ih B ) = ( ( A .ih B ) x. ( B .ih B ) ) ) |
| 24 |
5 2 2 23
|
mp3an |
|- ( ( ( A .ih B ) .h B ) .ih B ) = ( ( A .ih B ) x. ( B .ih B ) ) |
| 25 |
20 22 24
|
3eqtr4i |
|- ( ( ( B .ih B ) .h A ) .ih B ) = ( ( ( A .ih B ) .h B ) .ih B ) |
| 26 |
4 2
|
hicli |
|- ( ( ( B .ih B ) .h A ) .ih B ) e. CC |
| 27 |
6 2
|
hicli |
|- ( ( ( A .ih B ) .h B ) .ih B ) e. CC |
| 28 |
26 27
|
subeq0i |
|- ( ( ( ( ( B .ih B ) .h A ) .ih B ) - ( ( ( A .ih B ) .h B ) .ih B ) ) = 0 <-> ( ( ( B .ih B ) .h A ) .ih B ) = ( ( ( A .ih B ) .h B ) .ih B ) ) |
| 29 |
25 28
|
mpbir |
|- ( ( ( ( B .ih B ) .h A ) .ih B ) - ( ( ( A .ih B ) .h B ) .ih B ) ) = 0 |
| 30 |
19 29
|
eqtri |
|- ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih B ) = 0 |
| 31 |
2
|
h1dei |
|- ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> ( A e. ~H /\ A. x e. ~H ( ( B .ih x ) = 0 -> ( A .ih x ) = 0 ) ) ) |
| 32 |
1 31
|
mpbiran |
|- ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> A. x e. ~H ( ( B .ih x ) = 0 -> ( A .ih x ) = 0 ) ) |
| 33 |
4 6
|
hvsubcli |
|- ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) e. ~H |
| 34 |
|
oveq2 |
|- ( x = ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) -> ( B .ih x ) = ( B .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) ) |
| 35 |
34
|
eqeq1d |
|- ( x = ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) -> ( ( B .ih x ) = 0 <-> ( B .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 ) ) |
| 36 |
|
oveq2 |
|- ( x = ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) -> ( A .ih x ) = ( A .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) ) |
| 37 |
36
|
eqeq1d |
|- ( x = ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) -> ( ( A .ih x ) = 0 <-> ( A .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 ) ) |
| 38 |
35 37
|
imbi12d |
|- ( x = ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) -> ( ( ( B .ih x ) = 0 -> ( A .ih x ) = 0 ) <-> ( ( B .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 -> ( A .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 ) ) ) |
| 39 |
38
|
rspcv |
|- ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) e. ~H -> ( A. x e. ~H ( ( B .ih x ) = 0 -> ( A .ih x ) = 0 ) -> ( ( B .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 -> ( A .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 ) ) ) |
| 40 |
33 39
|
ax-mp |
|- ( A. x e. ~H ( ( B .ih x ) = 0 -> ( A .ih x ) = 0 ) -> ( ( B .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 -> ( A .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 ) ) |
| 41 |
32 40
|
sylbi |
|- ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> ( ( B .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 -> ( A .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 ) ) |
| 42 |
|
orthcom |
|- ( ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) e. ~H /\ B e. ~H ) -> ( ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih B ) = 0 <-> ( B .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 ) ) |
| 43 |
33 2 42
|
mp2an |
|- ( ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih B ) = 0 <-> ( B .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 ) |
| 44 |
|
orthcom |
|- ( ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) e. ~H /\ A e. ~H ) -> ( ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih A ) = 0 <-> ( A .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 ) ) |
| 45 |
33 1 44
|
mp2an |
|- ( ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih A ) = 0 <-> ( A .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 ) |
| 46 |
41 43 45
|
3imtr4g |
|- ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> ( ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih B ) = 0 -> ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih A ) = 0 ) ) |
| 47 |
30 46
|
mpi |
|- ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih A ) = 0 ) |
| 48 |
17 47
|
eqtrid |
|- ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> ( ( ( A .ih A ) x. ( B .ih B ) ) - ( ( A .ih B ) x. ( B .ih A ) ) ) = 0 ) |
| 49 |
11 3
|
mulcli |
|- ( ( A .ih A ) x. ( B .ih B ) ) e. CC |
| 50 |
2 1
|
hicli |
|- ( B .ih A ) e. CC |
| 51 |
5 50
|
mulcli |
|- ( ( A .ih B ) x. ( B .ih A ) ) e. CC |
| 52 |
49 51
|
subeq0i |
|- ( ( ( ( A .ih A ) x. ( B .ih B ) ) - ( ( A .ih B ) x. ( B .ih A ) ) ) = 0 <-> ( ( A .ih A ) x. ( B .ih B ) ) = ( ( A .ih B ) x. ( B .ih A ) ) ) |
| 53 |
48 52
|
sylib |
|- ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> ( ( A .ih A ) x. ( B .ih B ) ) = ( ( A .ih B ) x. ( B .ih A ) ) ) |
| 54 |
53
|
eqcomd |
|- ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> ( ( A .ih B ) x. ( B .ih A ) ) = ( ( A .ih A ) x. ( B .ih B ) ) ) |
| 55 |
1 2
|
bcseqi |
|- ( ( ( A .ih B ) x. ( B .ih A ) ) = ( ( A .ih A ) x. ( B .ih B ) ) <-> ( ( B .ih B ) .h A ) = ( ( A .ih B ) .h B ) ) |
| 56 |
54 55
|
sylib |
|- ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> ( ( B .ih B ) .h A ) = ( ( A .ih B ) .h B ) ) |