Step |
Hyp |
Ref |
Expression |
1 |
|
h1de2.1 |
|- A e. ~H |
2 |
|
h1de2.2 |
|- B e. ~H |
3 |
2 2
|
hicli |
|- ( B .ih B ) e. CC |
4 |
3 1
|
hvmulcli |
|- ( ( B .ih B ) .h A ) e. ~H |
5 |
1 2
|
hicli |
|- ( A .ih B ) e. CC |
6 |
5 2
|
hvmulcli |
|- ( ( A .ih B ) .h B ) e. ~H |
7 |
|
his2sub |
|- ( ( ( ( B .ih B ) .h A ) e. ~H /\ ( ( A .ih B ) .h B ) e. ~H /\ A e. ~H ) -> ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih A ) = ( ( ( ( B .ih B ) .h A ) .ih A ) - ( ( ( A .ih B ) .h B ) .ih A ) ) ) |
8 |
4 6 1 7
|
mp3an |
|- ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih A ) = ( ( ( ( B .ih B ) .h A ) .ih A ) - ( ( ( A .ih B ) .h B ) .ih A ) ) |
9 |
|
ax-his3 |
|- ( ( ( B .ih B ) e. CC /\ A e. ~H /\ A e. ~H ) -> ( ( ( B .ih B ) .h A ) .ih A ) = ( ( B .ih B ) x. ( A .ih A ) ) ) |
10 |
3 1 1 9
|
mp3an |
|- ( ( ( B .ih B ) .h A ) .ih A ) = ( ( B .ih B ) x. ( A .ih A ) ) |
11 |
1 1
|
hicli |
|- ( A .ih A ) e. CC |
12 |
3 11
|
mulcomi |
|- ( ( B .ih B ) x. ( A .ih A ) ) = ( ( A .ih A ) x. ( B .ih B ) ) |
13 |
10 12
|
eqtri |
|- ( ( ( B .ih B ) .h A ) .ih A ) = ( ( A .ih A ) x. ( B .ih B ) ) |
14 |
|
ax-his3 |
|- ( ( ( A .ih B ) e. CC /\ B e. ~H /\ A e. ~H ) -> ( ( ( A .ih B ) .h B ) .ih A ) = ( ( A .ih B ) x. ( B .ih A ) ) ) |
15 |
5 2 1 14
|
mp3an |
|- ( ( ( A .ih B ) .h B ) .ih A ) = ( ( A .ih B ) x. ( B .ih A ) ) |
16 |
13 15
|
oveq12i |
|- ( ( ( ( B .ih B ) .h A ) .ih A ) - ( ( ( A .ih B ) .h B ) .ih A ) ) = ( ( ( A .ih A ) x. ( B .ih B ) ) - ( ( A .ih B ) x. ( B .ih A ) ) ) |
17 |
8 16
|
eqtr2i |
|- ( ( ( A .ih A ) x. ( B .ih B ) ) - ( ( A .ih B ) x. ( B .ih A ) ) ) = ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih A ) |
18 |
|
his2sub |
|- ( ( ( ( B .ih B ) .h A ) e. ~H /\ ( ( A .ih B ) .h B ) e. ~H /\ B e. ~H ) -> ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih B ) = ( ( ( ( B .ih B ) .h A ) .ih B ) - ( ( ( A .ih B ) .h B ) .ih B ) ) ) |
19 |
4 6 2 18
|
mp3an |
|- ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih B ) = ( ( ( ( B .ih B ) .h A ) .ih B ) - ( ( ( A .ih B ) .h B ) .ih B ) ) |
20 |
3 5
|
mulcomi |
|- ( ( B .ih B ) x. ( A .ih B ) ) = ( ( A .ih B ) x. ( B .ih B ) ) |
21 |
|
ax-his3 |
|- ( ( ( B .ih B ) e. CC /\ A e. ~H /\ B e. ~H ) -> ( ( ( B .ih B ) .h A ) .ih B ) = ( ( B .ih B ) x. ( A .ih B ) ) ) |
22 |
3 1 2 21
|
mp3an |
|- ( ( ( B .ih B ) .h A ) .ih B ) = ( ( B .ih B ) x. ( A .ih B ) ) |
23 |
|
ax-his3 |
|- ( ( ( A .ih B ) e. CC /\ B e. ~H /\ B e. ~H ) -> ( ( ( A .ih B ) .h B ) .ih B ) = ( ( A .ih B ) x. ( B .ih B ) ) ) |
24 |
5 2 2 23
|
mp3an |
|- ( ( ( A .ih B ) .h B ) .ih B ) = ( ( A .ih B ) x. ( B .ih B ) ) |
25 |
20 22 24
|
3eqtr4i |
|- ( ( ( B .ih B ) .h A ) .ih B ) = ( ( ( A .ih B ) .h B ) .ih B ) |
26 |
4 2
|
hicli |
|- ( ( ( B .ih B ) .h A ) .ih B ) e. CC |
27 |
6 2
|
hicli |
|- ( ( ( A .ih B ) .h B ) .ih B ) e. CC |
28 |
26 27
|
subeq0i |
|- ( ( ( ( ( B .ih B ) .h A ) .ih B ) - ( ( ( A .ih B ) .h B ) .ih B ) ) = 0 <-> ( ( ( B .ih B ) .h A ) .ih B ) = ( ( ( A .ih B ) .h B ) .ih B ) ) |
29 |
25 28
|
mpbir |
|- ( ( ( ( B .ih B ) .h A ) .ih B ) - ( ( ( A .ih B ) .h B ) .ih B ) ) = 0 |
30 |
19 29
|
eqtri |
|- ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih B ) = 0 |
31 |
2
|
h1dei |
|- ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> ( A e. ~H /\ A. x e. ~H ( ( B .ih x ) = 0 -> ( A .ih x ) = 0 ) ) ) |
32 |
1 31
|
mpbiran |
|- ( A e. ( _|_ ` ( _|_ ` { B } ) ) <-> A. x e. ~H ( ( B .ih x ) = 0 -> ( A .ih x ) = 0 ) ) |
33 |
4 6
|
hvsubcli |
|- ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) e. ~H |
34 |
|
oveq2 |
|- ( x = ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) -> ( B .ih x ) = ( B .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) ) |
35 |
34
|
eqeq1d |
|- ( x = ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) -> ( ( B .ih x ) = 0 <-> ( B .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 ) ) |
36 |
|
oveq2 |
|- ( x = ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) -> ( A .ih x ) = ( A .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) ) |
37 |
36
|
eqeq1d |
|- ( x = ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) -> ( ( A .ih x ) = 0 <-> ( A .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 ) ) |
38 |
35 37
|
imbi12d |
|- ( x = ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) -> ( ( ( B .ih x ) = 0 -> ( A .ih x ) = 0 ) <-> ( ( B .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 -> ( A .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 ) ) ) |
39 |
38
|
rspcv |
|- ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) e. ~H -> ( A. x e. ~H ( ( B .ih x ) = 0 -> ( A .ih x ) = 0 ) -> ( ( B .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 -> ( A .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 ) ) ) |
40 |
33 39
|
ax-mp |
|- ( A. x e. ~H ( ( B .ih x ) = 0 -> ( A .ih x ) = 0 ) -> ( ( B .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 -> ( A .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 ) ) |
41 |
32 40
|
sylbi |
|- ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> ( ( B .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 -> ( A .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 ) ) |
42 |
|
orthcom |
|- ( ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) e. ~H /\ B e. ~H ) -> ( ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih B ) = 0 <-> ( B .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 ) ) |
43 |
33 2 42
|
mp2an |
|- ( ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih B ) = 0 <-> ( B .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 ) |
44 |
|
orthcom |
|- ( ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) e. ~H /\ A e. ~H ) -> ( ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih A ) = 0 <-> ( A .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 ) ) |
45 |
33 1 44
|
mp2an |
|- ( ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih A ) = 0 <-> ( A .ih ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) ) = 0 ) |
46 |
41 43 45
|
3imtr4g |
|- ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> ( ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih B ) = 0 -> ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih A ) = 0 ) ) |
47 |
30 46
|
mpi |
|- ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> ( ( ( ( B .ih B ) .h A ) -h ( ( A .ih B ) .h B ) ) .ih A ) = 0 ) |
48 |
17 47
|
eqtrid |
|- ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> ( ( ( A .ih A ) x. ( B .ih B ) ) - ( ( A .ih B ) x. ( B .ih A ) ) ) = 0 ) |
49 |
11 3
|
mulcli |
|- ( ( A .ih A ) x. ( B .ih B ) ) e. CC |
50 |
2 1
|
hicli |
|- ( B .ih A ) e. CC |
51 |
5 50
|
mulcli |
|- ( ( A .ih B ) x. ( B .ih A ) ) e. CC |
52 |
49 51
|
subeq0i |
|- ( ( ( ( A .ih A ) x. ( B .ih B ) ) - ( ( A .ih B ) x. ( B .ih A ) ) ) = 0 <-> ( ( A .ih A ) x. ( B .ih B ) ) = ( ( A .ih B ) x. ( B .ih A ) ) ) |
53 |
48 52
|
sylib |
|- ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> ( ( A .ih A ) x. ( B .ih B ) ) = ( ( A .ih B ) x. ( B .ih A ) ) ) |
54 |
53
|
eqcomd |
|- ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> ( ( A .ih B ) x. ( B .ih A ) ) = ( ( A .ih A ) x. ( B .ih B ) ) ) |
55 |
1 2
|
bcseqi |
|- ( ( ( A .ih B ) x. ( B .ih A ) ) = ( ( A .ih A ) x. ( B .ih B ) ) <-> ( ( B .ih B ) .h A ) = ( ( A .ih B ) .h B ) ) |
56 |
54 55
|
sylib |
|- ( A e. ( _|_ ` ( _|_ ` { B } ) ) -> ( ( B .ih B ) .h A ) = ( ( A .ih B ) .h B ) ) |