| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hlhillvec.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hlhillvec.u |
|- U = ( ( HLHil ` K ) ` W ) |
| 3 |
|
hlhillvec.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 4 |
|
eqid |
|- ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W ) |
| 5 |
1 4 3
|
dvhlvec |
|- ( ph -> ( ( DVecH ` K ) ` W ) e. LVec ) |
| 6 |
|
eqidd |
|- ( ph -> ( Base ` ( ( DVecH ` K ) ` W ) ) = ( Base ` ( ( DVecH ` K ) ` W ) ) ) |
| 7 |
|
eqid |
|- ( Base ` ( ( DVecH ` K ) ` W ) ) = ( Base ` ( ( DVecH ` K ) ` W ) ) |
| 8 |
1 2 3 4 7
|
hlhilbase |
|- ( ph -> ( Base ` ( ( DVecH ` K ) ` W ) ) = ( Base ` U ) ) |
| 9 |
|
eqid |
|- ( Scalar ` ( ( DVecH ` K ) ` W ) ) = ( Scalar ` ( ( DVecH ` K ) ` W ) ) |
| 10 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
| 11 |
|
eqidd |
|- ( ph -> ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) = ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) ) |
| 12 |
|
eqid |
|- ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) = ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) |
| 13 |
1 4 9 2 10 3 12
|
hlhilsbase2 |
|- ( ph -> ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) = ( Base ` ( Scalar ` U ) ) ) |
| 14 |
|
eqid |
|- ( +g ` ( ( DVecH ` K ) ` W ) ) = ( +g ` ( ( DVecH ` K ) ` W ) ) |
| 15 |
1 2 3 4 14
|
hlhilplus |
|- ( ph -> ( +g ` ( ( DVecH ` K ) ` W ) ) = ( +g ` U ) ) |
| 16 |
15
|
oveqdr |
|- ( ( ph /\ ( x e. ( Base ` ( ( DVecH ` K ) ` W ) ) /\ y e. ( Base ` ( ( DVecH ` K ) ` W ) ) ) ) -> ( x ( +g ` ( ( DVecH ` K ) ` W ) ) y ) = ( x ( +g ` U ) y ) ) |
| 17 |
|
eqid |
|- ( +g ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) = ( +g ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) |
| 18 |
1 4 9 2 10 3 17
|
hlhilsplus2 |
|- ( ph -> ( +g ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) = ( +g ` ( Scalar ` U ) ) ) |
| 19 |
18
|
oveqdr |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) /\ y e. ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) ) ) -> ( x ( +g ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) y ) = ( x ( +g ` ( Scalar ` U ) ) y ) ) |
| 20 |
|
eqid |
|- ( .r ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) = ( .r ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) |
| 21 |
1 4 9 2 10 3 20
|
hlhilsmul2 |
|- ( ph -> ( .r ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) = ( .r ` ( Scalar ` U ) ) ) |
| 22 |
21
|
oveqdr |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) /\ y e. ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) ) ) -> ( x ( .r ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) y ) = ( x ( .r ` ( Scalar ` U ) ) y ) ) |
| 23 |
|
eqid |
|- ( .s ` ( ( DVecH ` K ) ` W ) ) = ( .s ` ( ( DVecH ` K ) ` W ) ) |
| 24 |
1 4 23 2 3
|
hlhilvsca |
|- ( ph -> ( .s ` ( ( DVecH ` K ) ` W ) ) = ( .s ` U ) ) |
| 25 |
24
|
oveqdr |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) /\ y e. ( Base ` ( ( DVecH ` K ) ` W ) ) ) ) -> ( x ( .s ` ( ( DVecH ` K ) ` W ) ) y ) = ( x ( .s ` U ) y ) ) |
| 26 |
6 8 9 10 11 13 16 19 22 25
|
lvecprop2d |
|- ( ph -> ( ( ( DVecH ` K ) ` W ) e. LVec <-> U e. LVec ) ) |
| 27 |
5 26
|
mpbid |
|- ( ph -> U e. LVec ) |