Step |
Hyp |
Ref |
Expression |
1 |
|
hlhillvec.h |
|- H = ( LHyp ` K ) |
2 |
|
hlhillvec.u |
|- U = ( ( HLHil ` K ) ` W ) |
3 |
|
hlhillvec.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
4 |
|
eqid |
|- ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W ) |
5 |
1 4 3
|
dvhlvec |
|- ( ph -> ( ( DVecH ` K ) ` W ) e. LVec ) |
6 |
|
eqidd |
|- ( ph -> ( Base ` ( ( DVecH ` K ) ` W ) ) = ( Base ` ( ( DVecH ` K ) ` W ) ) ) |
7 |
|
eqid |
|- ( Base ` ( ( DVecH ` K ) ` W ) ) = ( Base ` ( ( DVecH ` K ) ` W ) ) |
8 |
1 2 3 4 7
|
hlhilbase |
|- ( ph -> ( Base ` ( ( DVecH ` K ) ` W ) ) = ( Base ` U ) ) |
9 |
|
eqid |
|- ( Scalar ` ( ( DVecH ` K ) ` W ) ) = ( Scalar ` ( ( DVecH ` K ) ` W ) ) |
10 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
11 |
|
eqidd |
|- ( ph -> ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) = ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) ) |
12 |
|
eqid |
|- ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) = ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) |
13 |
1 4 9 2 10 3 12
|
hlhilsbase2 |
|- ( ph -> ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) = ( Base ` ( Scalar ` U ) ) ) |
14 |
|
eqid |
|- ( +g ` ( ( DVecH ` K ) ` W ) ) = ( +g ` ( ( DVecH ` K ) ` W ) ) |
15 |
1 2 3 4 14
|
hlhilplus |
|- ( ph -> ( +g ` ( ( DVecH ` K ) ` W ) ) = ( +g ` U ) ) |
16 |
15
|
oveqdr |
|- ( ( ph /\ ( x e. ( Base ` ( ( DVecH ` K ) ` W ) ) /\ y e. ( Base ` ( ( DVecH ` K ) ` W ) ) ) ) -> ( x ( +g ` ( ( DVecH ` K ) ` W ) ) y ) = ( x ( +g ` U ) y ) ) |
17 |
|
eqid |
|- ( +g ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) = ( +g ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) |
18 |
1 4 9 2 10 3 17
|
hlhilsplus2 |
|- ( ph -> ( +g ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) = ( +g ` ( Scalar ` U ) ) ) |
19 |
18
|
oveqdr |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) /\ y e. ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) ) ) -> ( x ( +g ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) y ) = ( x ( +g ` ( Scalar ` U ) ) y ) ) |
20 |
|
eqid |
|- ( .r ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) = ( .r ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) |
21 |
1 4 9 2 10 3 20
|
hlhilsmul2 |
|- ( ph -> ( .r ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) = ( .r ` ( Scalar ` U ) ) ) |
22 |
21
|
oveqdr |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) /\ y e. ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) ) ) -> ( x ( .r ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) y ) = ( x ( .r ` ( Scalar ` U ) ) y ) ) |
23 |
|
eqid |
|- ( .s ` ( ( DVecH ` K ) ` W ) ) = ( .s ` ( ( DVecH ` K ) ` W ) ) |
24 |
1 4 23 2 3
|
hlhilvsca |
|- ( ph -> ( .s ` ( ( DVecH ` K ) ` W ) ) = ( .s ` U ) ) |
25 |
24
|
oveqdr |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) /\ y e. ( Base ` ( ( DVecH ` K ) ` W ) ) ) ) -> ( x ( .s ` ( ( DVecH ` K ) ` W ) ) y ) = ( x ( .s ` U ) y ) ) |
26 |
6 8 9 10 11 13 16 19 22 25
|
lvecprop2d |
|- ( ph -> ( ( ( DVecH ` K ) ` W ) e. LVec <-> U e. LVec ) ) |
27 |
5 26
|
mpbid |
|- ( ph -> U e. LVec ) |