| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlhillvec.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hlhillvec.u |  |-  U = ( ( HLHil ` K ) ` W ) | 
						
							| 3 |  | hlhillvec.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 4 |  | eqid |  |-  ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W ) | 
						
							| 5 | 1 4 3 | dvhlvec |  |-  ( ph -> ( ( DVecH ` K ) ` W ) e. LVec ) | 
						
							| 6 |  | eqidd |  |-  ( ph -> ( Base ` ( ( DVecH ` K ) ` W ) ) = ( Base ` ( ( DVecH ` K ) ` W ) ) ) | 
						
							| 7 |  | eqid |  |-  ( Base ` ( ( DVecH ` K ) ` W ) ) = ( Base ` ( ( DVecH ` K ) ` W ) ) | 
						
							| 8 | 1 2 3 4 7 | hlhilbase |  |-  ( ph -> ( Base ` ( ( DVecH ` K ) ` W ) ) = ( Base ` U ) ) | 
						
							| 9 |  | eqid |  |-  ( Scalar ` ( ( DVecH ` K ) ` W ) ) = ( Scalar ` ( ( DVecH ` K ) ` W ) ) | 
						
							| 10 |  | eqid |  |-  ( Scalar ` U ) = ( Scalar ` U ) | 
						
							| 11 |  | eqidd |  |-  ( ph -> ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) = ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) ) | 
						
							| 12 |  | eqid |  |-  ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) = ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) | 
						
							| 13 | 1 4 9 2 10 3 12 | hlhilsbase2 |  |-  ( ph -> ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) = ( Base ` ( Scalar ` U ) ) ) | 
						
							| 14 |  | eqid |  |-  ( +g ` ( ( DVecH ` K ) ` W ) ) = ( +g ` ( ( DVecH ` K ) ` W ) ) | 
						
							| 15 | 1 2 3 4 14 | hlhilplus |  |-  ( ph -> ( +g ` ( ( DVecH ` K ) ` W ) ) = ( +g ` U ) ) | 
						
							| 16 | 15 | oveqdr |  |-  ( ( ph /\ ( x e. ( Base ` ( ( DVecH ` K ) ` W ) ) /\ y e. ( Base ` ( ( DVecH ` K ) ` W ) ) ) ) -> ( x ( +g ` ( ( DVecH ` K ) ` W ) ) y ) = ( x ( +g ` U ) y ) ) | 
						
							| 17 |  | eqid |  |-  ( +g ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) = ( +g ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) | 
						
							| 18 | 1 4 9 2 10 3 17 | hlhilsplus2 |  |-  ( ph -> ( +g ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) = ( +g ` ( Scalar ` U ) ) ) | 
						
							| 19 | 18 | oveqdr |  |-  ( ( ph /\ ( x e. ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) /\ y e. ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) ) ) -> ( x ( +g ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) y ) = ( x ( +g ` ( Scalar ` U ) ) y ) ) | 
						
							| 20 |  | eqid |  |-  ( .r ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) = ( .r ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) | 
						
							| 21 | 1 4 9 2 10 3 20 | hlhilsmul2 |  |-  ( ph -> ( .r ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) = ( .r ` ( Scalar ` U ) ) ) | 
						
							| 22 | 21 | oveqdr |  |-  ( ( ph /\ ( x e. ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) /\ y e. ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) ) ) -> ( x ( .r ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) y ) = ( x ( .r ` ( Scalar ` U ) ) y ) ) | 
						
							| 23 |  | eqid |  |-  ( .s ` ( ( DVecH ` K ) ` W ) ) = ( .s ` ( ( DVecH ` K ) ` W ) ) | 
						
							| 24 | 1 4 23 2 3 | hlhilvsca |  |-  ( ph -> ( .s ` ( ( DVecH ` K ) ` W ) ) = ( .s ` U ) ) | 
						
							| 25 | 24 | oveqdr |  |-  ( ( ph /\ ( x e. ( Base ` ( Scalar ` ( ( DVecH ` K ) ` W ) ) ) /\ y e. ( Base ` ( ( DVecH ` K ) ` W ) ) ) ) -> ( x ( .s ` ( ( DVecH ` K ) ` W ) ) y ) = ( x ( .s ` U ) y ) ) | 
						
							| 26 | 6 8 9 10 11 13 16 19 22 25 | lvecprop2d |  |-  ( ph -> ( ( ( DVecH ` K ) ` W ) e. LVec <-> U e. LVec ) ) | 
						
							| 27 | 5 26 | mpbid |  |-  ( ph -> U e. LVec ) |