| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hlhillvec.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
hlhillvec.u |
⊢ 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
hlhillvec.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 4 |
|
eqid |
⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
1 4 3
|
dvhlvec |
⊢ ( 𝜑 → ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ∈ LVec ) |
| 6 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 7 |
|
eqid |
⊢ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 8 |
1 2 3 4 7
|
hlhilbase |
⊢ ( 𝜑 → ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ 𝑈 ) ) |
| 9 |
|
eqid |
⊢ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 10 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
| 11 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( Base ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
| 12 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( Base ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 13 |
1 4 9 2 10 3 12
|
hlhilsbase2 |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 14 |
|
eqid |
⊢ ( +g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( +g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 15 |
1 2 3 4 14
|
hlhilplus |
⊢ ( 𝜑 → ( +g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( +g ‘ 𝑈 ) ) |
| 16 |
15
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) → ( 𝑥 ( +g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) ) |
| 17 |
|
eqid |
⊢ ( +g ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( +g ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 18 |
1 4 9 2 10 3 17
|
hlhilsplus2 |
⊢ ( 𝜑 → ( +g ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( +g ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 19 |
18
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) → ( 𝑥 ( +g ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑈 ) ) 𝑦 ) ) |
| 20 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( .r ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 21 |
1 4 9 2 10 3 20
|
hlhilsmul2 |
⊢ ( 𝜑 → ( .r ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( .r ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 22 |
21
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) → ( 𝑥 ( .r ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) 𝑦 ) = ( 𝑥 ( .r ‘ ( Scalar ‘ 𝑈 ) ) 𝑦 ) ) |
| 23 |
|
eqid |
⊢ ( ·𝑠 ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ·𝑠 ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 24 |
1 4 23 2 3
|
hlhilvsca |
⊢ ( 𝜑 → ( ·𝑠 ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ·𝑠 ‘ 𝑈 ) ) |
| 25 |
24
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) → ( 𝑥 ( ·𝑠 ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 𝑦 ) ) |
| 26 |
6 8 9 10 11 13 16 19 22 25
|
lvecprop2d |
⊢ ( 𝜑 → ( ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ∈ LVec ↔ 𝑈 ∈ LVec ) ) |
| 27 |
5 26
|
mpbid |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |