| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlhillvec.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hlhillvec.u | ⊢ 𝑈  =  ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hlhillvec.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 4 |  | eqid | ⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 | 1 4 3 | dvhlvec | ⊢ ( 𝜑  →  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )  ∈  LVec ) | 
						
							| 6 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 8 | 1 2 3 4 7 | hlhilbase | ⊢ ( 𝜑  →  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( Base ‘ 𝑈 ) ) | 
						
							| 9 |  | eqid | ⊢ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 10 |  | eqid | ⊢ ( Scalar ‘ 𝑈 )  =  ( Scalar ‘ 𝑈 ) | 
						
							| 11 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )  =  ( Base ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )  =  ( Base ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 13 | 1 4 9 2 10 3 12 | hlhilsbase2 | ⊢ ( 𝜑  →  ( Base ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )  =  ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) | 
						
							| 14 |  | eqid | ⊢ ( +g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( +g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 15 | 1 2 3 4 14 | hlhilplus | ⊢ ( 𝜑  →  ( +g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( +g ‘ 𝑈 ) ) | 
						
							| 16 | 15 | oveqdr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  ∧  𝑦  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) )  →  ( 𝑥 ( +g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) ) | 
						
							| 17 |  | eqid | ⊢ ( +g ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )  =  ( +g ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 18 | 1 4 9 2 10 3 17 | hlhilsplus2 | ⊢ ( 𝜑  →  ( +g ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )  =  ( +g ‘ ( Scalar ‘ 𝑈 ) ) ) | 
						
							| 19 | 18 | oveqdr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )  ∧  𝑦  ∈  ( Base ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) )  →  ( 𝑥 ( +g ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) 𝑦 )  =  ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑈 ) ) 𝑦 ) ) | 
						
							| 20 |  | eqid | ⊢ ( .r ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )  =  ( .r ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 21 | 1 4 9 2 10 3 20 | hlhilsmul2 | ⊢ ( 𝜑  →  ( .r ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )  =  ( .r ‘ ( Scalar ‘ 𝑈 ) ) ) | 
						
							| 22 | 21 | oveqdr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )  ∧  𝑦  ∈  ( Base ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) )  →  ( 𝑥 ( .r ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) 𝑦 )  =  ( 𝑥 ( .r ‘ ( Scalar ‘ 𝑈 ) ) 𝑦 ) ) | 
						
							| 23 |  | eqid | ⊢ (  ·𝑠  ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  =  (  ·𝑠  ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 24 | 1 4 23 2 3 | hlhilvsca | ⊢ ( 𝜑  →  (  ·𝑠  ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  =  (  ·𝑠  ‘ 𝑈 ) ) | 
						
							| 25 | 24 | oveqdr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )  ∧  𝑦  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) )  →  ( 𝑥 (  ·𝑠  ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) 𝑦 )  =  ( 𝑥 (  ·𝑠  ‘ 𝑈 ) 𝑦 ) ) | 
						
							| 26 | 6 8 9 10 11 13 16 19 22 25 | lvecprop2d | ⊢ ( 𝜑  →  ( ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )  ∈  LVec  ↔  𝑈  ∈  LVec ) ) | 
						
							| 27 | 5 26 | mpbid | ⊢ ( 𝜑  →  𝑈  ∈  LVec ) |