| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idfth.i |
|- I = ( idFunc ` C ) |
| 2 |
|
idsubc.h |
|- H = ( Homf ` D ) |
| 3 |
|
id |
|- ( I e. ( D Func E ) -> I e. ( D Func E ) ) |
| 4 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 5 |
|
eqid |
|- ( x e. ( ( 1st ` I ) " ( Base ` D ) ) , y e. ( ( 1st ` I ) " ( Base ` D ) ) |-> U_ p e. ( ( `' ( 1st ` I ) " { x } ) X. ( `' ( 1st ` I ) " { y } ) ) ( ( ( 2nd ` I ) ` p ) " ( ( Hom ` D ) ` p ) ) ) = ( x e. ( ( 1st ` I ) " ( Base ` D ) ) , y e. ( ( 1st ` I ) " ( Base ` D ) ) |-> U_ p e. ( ( `' ( 1st ` I ) " { x } ) X. ( `' ( 1st ` I ) " { y } ) ) ( ( ( 2nd ` I ) ` p ) " ( ( Hom ` D ) ` p ) ) ) |
| 6 |
1 3
|
imaidfu2lem |
|- ( I e. ( D Func E ) -> ( ( 1st ` I ) " ( Base ` D ) ) = ( Base ` D ) ) |
| 7 |
1 3 4 2 5 6
|
imaidfu2 |
|- ( I e. ( D Func E ) -> H = ( x e. ( ( 1st ` I ) " ( Base ` D ) ) , y e. ( ( 1st ` I ) " ( Base ` D ) ) |-> U_ p e. ( ( `' ( 1st ` I ) " { x } ) X. ( `' ( 1st ` I ) " { y } ) ) ( ( ( 2nd ` I ) ` p ) " ( ( Hom ` D ) ` p ) ) ) ) |
| 8 |
|
eqid |
|- ( ( 1st ` I ) " ( Base ` D ) ) = ( ( 1st ` I ) " ( Base ` D ) ) |
| 9 |
3
|
func1st2nd |
|- ( I e. ( D Func E ) -> ( 1st ` I ) ( D Func E ) ( 2nd ` I ) ) |
| 10 |
|
f1oi |
|- ( _I |` ( Base ` D ) ) : ( Base ` D ) -1-1-onto-> ( Base ` D ) |
| 11 |
|
dff1o3 |
|- ( ( _I |` ( Base ` D ) ) : ( Base ` D ) -1-1-onto-> ( Base ` D ) <-> ( ( _I |` ( Base ` D ) ) : ( Base ` D ) -onto-> ( Base ` D ) /\ Fun `' ( _I |` ( Base ` D ) ) ) ) |
| 12 |
10 11
|
mpbi |
|- ( ( _I |` ( Base ` D ) ) : ( Base ` D ) -onto-> ( Base ` D ) /\ Fun `' ( _I |` ( Base ` D ) ) ) |
| 13 |
12
|
simpri |
|- Fun `' ( _I |` ( Base ` D ) ) |
| 14 |
|
eqidd |
|- ( I e. ( D Func E ) -> ( Base ` D ) = ( Base ` D ) ) |
| 15 |
1 3 14
|
idfu1sta |
|- ( I e. ( D Func E ) -> ( 1st ` I ) = ( _I |` ( Base ` D ) ) ) |
| 16 |
15
|
cnveqd |
|- ( I e. ( D Func E ) -> `' ( 1st ` I ) = `' ( _I |` ( Base ` D ) ) ) |
| 17 |
16
|
funeqd |
|- ( I e. ( D Func E ) -> ( Fun `' ( 1st ` I ) <-> Fun `' ( _I |` ( Base ` D ) ) ) ) |
| 18 |
13 17
|
mpbiri |
|- ( I e. ( D Func E ) -> Fun `' ( 1st ` I ) ) |
| 19 |
8 4 5 9 18
|
imasubc3 |
|- ( I e. ( D Func E ) -> ( x e. ( ( 1st ` I ) " ( Base ` D ) ) , y e. ( ( 1st ` I ) " ( Base ` D ) ) |-> U_ p e. ( ( `' ( 1st ` I ) " { x } ) X. ( `' ( 1st ` I ) " { y } ) ) ( ( ( 2nd ` I ) ` p ) " ( ( Hom ` D ) ` p ) ) ) e. ( Subcat ` E ) ) |
| 20 |
7 19
|
eqeltrd |
|- ( I e. ( D Func E ) -> H e. ( Subcat ` E ) ) |