Metamath Proof Explorer


Theorem idsubc

Description: The source category of an inclusion functor is a subcategory of the target category. See also Remark 4.4 in Adamek p. 49. (Contributed by Zhi Wang, 10-Nov-2025)

Ref Expression
Hypotheses idfth.i 𝐼 = ( idfunc𝐶 )
idsubc.h 𝐻 = ( Homf𝐷 )
Assertion idsubc ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) → 𝐻 ∈ ( Subcat ‘ 𝐸 ) )

Proof

Step Hyp Ref Expression
1 idfth.i 𝐼 = ( idfunc𝐶 )
2 idsubc.h 𝐻 = ( Homf𝐷 )
3 id ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) → 𝐼 ∈ ( 𝐷 Func 𝐸 ) )
4 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
5 eqid ( 𝑥 ∈ ( ( 1st𝐼 ) “ ( Base ‘ 𝐷 ) ) , 𝑦 ∈ ( ( 1st𝐼 ) “ ( Base ‘ 𝐷 ) ) ↦ 𝑝 ∈ ( ( ( 1st𝐼 ) “ { 𝑥 } ) × ( ( 1st𝐼 ) “ { 𝑦 } ) ) ( ( ( 2nd𝐼 ) ‘ 𝑝 ) “ ( ( Hom ‘ 𝐷 ) ‘ 𝑝 ) ) ) = ( 𝑥 ∈ ( ( 1st𝐼 ) “ ( Base ‘ 𝐷 ) ) , 𝑦 ∈ ( ( 1st𝐼 ) “ ( Base ‘ 𝐷 ) ) ↦ 𝑝 ∈ ( ( ( 1st𝐼 ) “ { 𝑥 } ) × ( ( 1st𝐼 ) “ { 𝑦 } ) ) ( ( ( 2nd𝐼 ) ‘ 𝑝 ) “ ( ( Hom ‘ 𝐷 ) ‘ 𝑝 ) ) )
6 1 3 imaidfu2lem ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) → ( ( 1st𝐼 ) “ ( Base ‘ 𝐷 ) ) = ( Base ‘ 𝐷 ) )
7 1 3 4 2 5 6 imaidfu2 ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) → 𝐻 = ( 𝑥 ∈ ( ( 1st𝐼 ) “ ( Base ‘ 𝐷 ) ) , 𝑦 ∈ ( ( 1st𝐼 ) “ ( Base ‘ 𝐷 ) ) ↦ 𝑝 ∈ ( ( ( 1st𝐼 ) “ { 𝑥 } ) × ( ( 1st𝐼 ) “ { 𝑦 } ) ) ( ( ( 2nd𝐼 ) ‘ 𝑝 ) “ ( ( Hom ‘ 𝐷 ) ‘ 𝑝 ) ) ) )
8 eqid ( ( 1st𝐼 ) “ ( Base ‘ 𝐷 ) ) = ( ( 1st𝐼 ) “ ( Base ‘ 𝐷 ) )
9 3 func1st2nd ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) → ( 1st𝐼 ) ( 𝐷 Func 𝐸 ) ( 2nd𝐼 ) )
10 f1oi ( I ↾ ( Base ‘ 𝐷 ) ) : ( Base ‘ 𝐷 ) –1-1-onto→ ( Base ‘ 𝐷 )
11 dff1o3 ( ( I ↾ ( Base ‘ 𝐷 ) ) : ( Base ‘ 𝐷 ) –1-1-onto→ ( Base ‘ 𝐷 ) ↔ ( ( I ↾ ( Base ‘ 𝐷 ) ) : ( Base ‘ 𝐷 ) –onto→ ( Base ‘ 𝐷 ) ∧ Fun ( I ↾ ( Base ‘ 𝐷 ) ) ) )
12 10 11 mpbi ( ( I ↾ ( Base ‘ 𝐷 ) ) : ( Base ‘ 𝐷 ) –onto→ ( Base ‘ 𝐷 ) ∧ Fun ( I ↾ ( Base ‘ 𝐷 ) ) )
13 12 simpri Fun ( I ↾ ( Base ‘ 𝐷 ) )
14 eqidd ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) → ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) )
15 1 3 14 idfu1sta ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) → ( 1st𝐼 ) = ( I ↾ ( Base ‘ 𝐷 ) ) )
16 15 cnveqd ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) → ( 1st𝐼 ) = ( I ↾ ( Base ‘ 𝐷 ) ) )
17 16 funeqd ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) → ( Fun ( 1st𝐼 ) ↔ Fun ( I ↾ ( Base ‘ 𝐷 ) ) ) )
18 13 17 mpbiri ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) → Fun ( 1st𝐼 ) )
19 8 4 5 9 18 imasubc3 ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) → ( 𝑥 ∈ ( ( 1st𝐼 ) “ ( Base ‘ 𝐷 ) ) , 𝑦 ∈ ( ( 1st𝐼 ) “ ( Base ‘ 𝐷 ) ) ↦ 𝑝 ∈ ( ( ( 1st𝐼 ) “ { 𝑥 } ) × ( ( 1st𝐼 ) “ { 𝑦 } ) ) ( ( ( 2nd𝐼 ) ‘ 𝑝 ) “ ( ( Hom ‘ 𝐷 ) ‘ 𝑝 ) ) ) ∈ ( Subcat ‘ 𝐸 ) )
20 7 19 eqeltrd ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) → 𝐻 ∈ ( Subcat ‘ 𝐸 ) )