Metamath Proof Explorer


Theorem idsubc

Description: The source category of an inclusion functor is a subcategory of the target category. See also Remark 4.4 in Adamek p. 49. (Contributed by Zhi Wang, 10-Nov-2025)

Ref Expression
Hypotheses idfth.i I = id func C
idsubc.h H = Hom 𝑓 D
Assertion idsubc I D Func E H Subcat E

Proof

Step Hyp Ref Expression
1 idfth.i I = id func C
2 idsubc.h H = Hom 𝑓 D
3 id I D Func E I D Func E
4 eqid Hom D = Hom D
5 eqid x 1 st I Base D , y 1 st I Base D p 1 st I -1 x × 1 st I -1 y 2 nd I p Hom D p = x 1 st I Base D , y 1 st I Base D p 1 st I -1 x × 1 st I -1 y 2 nd I p Hom D p
6 1 3 imaidfu2lem I D Func E 1 st I Base D = Base D
7 1 3 4 2 5 6 imaidfu2 I D Func E H = x 1 st I Base D , y 1 st I Base D p 1 st I -1 x × 1 st I -1 y 2 nd I p Hom D p
8 eqid 1 st I Base D = 1 st I Base D
9 3 func1st2nd I D Func E 1 st I D Func E 2 nd I
10 f1oi I Base D : Base D 1-1 onto Base D
11 dff1o3 I Base D : Base D 1-1 onto Base D I Base D : Base D onto Base D Fun I Base D -1
12 10 11 mpbi I Base D : Base D onto Base D Fun I Base D -1
13 12 simpri Fun I Base D -1
14 eqidd I D Func E Base D = Base D
15 1 3 14 idfu1sta I D Func E 1 st I = I Base D
16 15 cnveqd I D Func E 1 st I -1 = I Base D -1
17 16 funeqd I D Func E Fun 1 st I -1 Fun I Base D -1
18 13 17 mpbiri I D Func E Fun 1 st I -1
19 8 4 5 9 18 imasubc3 I D Func E x 1 st I Base D , y 1 st I Base D p 1 st I -1 x × 1 st I -1 y 2 nd I p Hom D p Subcat E
20 7 19 eqeltrd I D Func E H Subcat E